cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178423 Semiprimes for which dropping any digit gives a prime number.

Original entry on oeis.org

22, 25, 33, 35, 55, 57, 77, 111, 119, 371, 411, 413, 417, 437, 471, 473, 611, 671, 713, 731, 1037, 1073, 1079, 1379, 1397, 1673, 1739, 1937, 1991, 2571, 2577, 2811, 3113, 3131, 3173, 3317, 4331, 4439, 4499, 4631, 6017, 6431, 6773, 7619, 9977, 12777
Offset: 1

Views

Author

Jonathan Vos Post, May 27 2010

Keywords

Comments

This is the 2nd row of the infinite array A[k,n] = n-th number with k prime factors (not necessarily distinct) for which dropping any digit gives a prime number.
The first row A[1,n] = A051362 = numbers n such that n remains prime if any digit is deleted (zeros allowed).
The 3rd row A[3,n] begins {27 = 3^3, 52 = 2^2 * 13, 75 = 3 * 5^2, 117 = 3^2 * 13, 171 = 3^2 * 19, ...}.
The 4th row A[4,n] begins: {2277 = 3^2 * 11 * 23, 5577 = 3 * 11 * 13^2, 8211 = 3 * 7 * 17 * 23, 8811 = 3^2 * 11 * 89, ...}.
The 5th row A[5,n] begins:{32 = 2^5, 72 = 2^3 x 3^2, ...}.

Examples

			a(9) = 119 because this is a semiprime (119 = 7 * 17), dropping the leftmost digit gives 19 (a prime), dropping the middle digit gives 19 (a prime), and dropping the rightmost digit gives 11 (a prime).
		

Crossrefs

Programs

  • Mathematica
    ddp[n_]:=Module[{idn=IntegerDigits[n]},PrimeOmega[n]==2 && And@@PrimeQ[ FromDigits/@Table[Drop[idn,{i}],{i,Length[idn]}]]]; Select[Range[ 13000],ddp] (* Harvey P. Dale, Apr 10 2012 *)

Formula

A001358 INTERSECTION A034895.