cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178444 Markov numbers that are prime.

Original entry on oeis.org

2, 5, 13, 29, 89, 233, 433, 1597, 2897, 5741, 7561, 28657, 33461, 43261, 96557, 426389, 514229, 1686049, 2922509, 3276509, 94418953, 321534781, 433494437, 780291637, 1405695061, 2971215073, 19577194573, 25209506681, 44208781349, 44560482149, 128367472469
Offset: 1

Views

Author

Paul Muljadi, Jan 01 2011

Keywords

Comments

Triples of prime Markov numbers appear to be very rare. For Markov numbers less than 10^1000, only five are known: (2, 5, 29), (5, 29, 433), (5, 2897, 43261), (2, 5741, 33461), and (89, 6017226864647074440629, 1606577036114427599277221). Note that the smallest members of these triples are prime Fibonacci numbers 2, 5, and 89. [T. D. Noe, Jan 28 2011]
All terms after the first are of the form 4k+1. [Paul Muljadi, Jan 31 2011]
Bourgain, Gamburd, and Sarnak have announced a proof that almost all Markoff numbers are composite--see A256395. Equivalently, the present sequence has density zero among all Markoff numbers. (It is conjectured that the sequence is infinite.) - Jonathan Sondow, Apr 30 2015

Crossrefs

Programs

  • Mathematica
    m = {1}; Do[x = m[[i]]; y = m[[j]]; a = (3*x*y + Sqrt[ -4*x^2 - 4*y^2 + 9*x^2*y^2])/2; b = (3*x*y + Sqrt[ -4*x^2 - 4*y^2 + 9*x^2*y^2])/2; If[ IntegerQ[a], m = Union[ Join[m, {a}]]]; If[ IntegerQ[b], m = Union[ Join[m, {b}]]], {n, 8}, {i, Length[m]}, {j, i}]; Take[m, 40] (* Robert G. Wilson v, Oct 05 2005, taken from A002559 *); Select[m, PrimeQ]