cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A002559 Markoff (or Markov) numbers: union of positive integers x, y, z satisfying x^2 + y^2 + z^2 = 3*x*y*z.

Original entry on oeis.org

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, 1597, 2897, 4181, 5741, 6466, 7561, 9077, 10946, 14701, 28657, 33461, 37666, 43261, 51641, 62210, 75025, 96557, 135137, 195025, 196418, 294685, 426389, 499393, 514229, 646018, 925765, 1136689, 1278818
Offset: 1

Views

Author

Keywords

Comments

A004280 gives indices of Fibonacci numbers (A000045) which are also Markoff (or Markov) numbers.
As mentioned by Conway and Guy, all odd-indexed Pell numbers (A001653) also appear in this sequence. The positions of the Fibonacci and Pell numbers in this sequence are given in A158381 and A158384, respectively. - T. D. Noe, Mar 19 2009
Assuming that each solution (x,y,z) is ordered x <= y <= z, the open problem is to prove that each z value occurs only once. There are no counterexamples in the first 1046858 terms, which have z values < Fibonacci(5001) = 6.2763...*10^1044. - T. D. Noe, Mar 19 2009
Zagier shows that there are C log^2 (3x) + O(log x (log log x)^2) Markoff numbers below x, for C = 0.180717.... - Charles R Greathouse IV, Mar 14 2010 [but see Thompson, below]
The odd numbers in this sequence are of the form 4k+1. - Paul Muljadi, Jan 31 2011
All prime divisors of Markov numbers (with exception 2) are of the form 4k+1. - Artur Jasinski, Nov 20 2011
Kaneko extends a parameterization of Markoff numbers, citing Frobenius, and relates it to a conjectured behavior of the elliptic modular j-function at real quadratic numbers. - Jonathan Vos Post, May 06 2012
Riedel (2012) claims a proof of the unicity conjecture: "it will be shown that the largest member of [a Markoff] triple determines the other two uniquely." - Jonathan Sondow, Aug 21 2012
There are 93 terms with each term <= 2*10^9 in the sequence. The number of distinct prime divisors of any of the first 93 terms is less than 6. The second, third, 4th, 5th, 6th, 10th, 11th, 15th, 16th, 18th, 20th, 24th, 25th, 27th, 30th, 36th, 38th, 45th, 48th, 49th, 69th, 79th, 81st, 86th, 91st terms are primes. - Shanzhen Gao, Sep 18 2013
Bourgain, Gamburd, and Sarnak have announced a proof that almost all Markoff numbers are composite--see A256395. Equivalently, the prime Markoff numbers A178444 have density zero among all Markoff numbers. (It is conjectured that infinitely many Markoff numbers are prime.) - Jonathan Sondow, Apr 30 2015
According to Sarnak on Apr 30 2015, all claims to have proved the unicity conjecture have turned out to be false. - Jonathan Sondow, May 01 2015
The numeric value of C = lim (number of Markoff numbers < x) / log^2(3x) given in Zagier's paper and quoted above suffers from an accidentally omitted digit and rounding errors. The correct value is C = 0.180717104711806... (see A261613 for more digits). - Christopher E. Thompson, Aug 22 2015
Named after the Russian mathematician Andrey Andreyevich Markov (1856-1922). - Amiram Eldar, Jun 10 2021

References

  • Martin Aigner, Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013. x+257 pp. ISBN: 978-3-319-00887-5; 978-3-319-00888-2 MR3098784
  • John H. Conway and Richard K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 187.
  • Jean-Marie De Koninck, Those Fascinating Numbers, Amer. Math. Soc., 2009, page 86.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.31.3, p. 200.
  • Richard K. Guy, Unsolved Problems in Number Theory, D12.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, notes on ch. 24.6 (p. 412)
  • Florian Luca and A. Srinivasan, Markov equation with Fibonacci components, Fib. Q., 56 (No. 2, 2018), 126-129.
  • Richard A. Mollin, Advanced Number Theory with Applications, Chapman & Hall/CRC, Boca Raton, 2010, 123-125.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    m = {1}; Do[x = m[[i]]; y = m[[j]]; a = (3*x*y + Sqrt[ -4*x^2 - 4*y^2 + 9*x^2*y^2])/2; b = (3*x*y + Sqrt[ -4*x^2 - 4*y^2 + 9*x^2*y^2])/2; If[ IntegerQ[a], m = Union[ Join[m, {a}]]]; If[ IntegerQ[b], m = Union[ Join[m, {b}]]], {n, 8}, {i, Length[m]}, {j, i}]; Take[m, 40] (* Robert G. Wilson v, Oct 05 2005 *)
    terms = 40; depth0 = 10; Clear[ft]; ft[n_] := ft[n] = Module[{f}, f[] = {1, 2, 5}; f[ud___, u(*up*)] := f[ud, u] = Module[{g = f[ud]}, {g[[1]], g[[3]], 3*g[[1]]*g[[3]] - g[[2]]}]; f[ud___, d(*down*)] := f[ud, d] = Module[{g = f[ud]}, {g[[2]], g[[3]], 3*g[[2]]*g[[3]] - g[[1]]}]; f @@@ Tuples[{u, d}, n] // Flatten // Union // PadRight[#, terms]&]; ft[n = depth0]; ft[n++]; While[ft[n] != ft[n - 1], n++]; Print["depth = n = ", n]; A002559 = ft[n] (* Jean-François Alcover, Aug 29 2017 *)
    MAX=10^10;
    data=NestWhile[Select[Union[Sort/@Flatten[Table[{a, b, 3a b -c}/.MapThread[Rule, {{a, b, c}, #}]&/@Map[RotateLeft[ii, #]&, Range[3]], {ii, #}], 1]], Max[#]Xianwen Wang, Aug 22 2021 *)
  • Python
    markov = set[tuple[int, int, int]]
    def MarkovNumbers(len: int = 50, MAX: int = 10**10) -> list[int]:
        cur: markov = {(1, 1, 1), (1, 1, 2), }
        def step(triples: markov) -> markov:
            ret: markov = set()
            for (a, b, c) in triples:
                for x, y, z in [(a, b, c), (b, c, a), (c, a, b)]:
                    t = (x, y, 3 * x * y - z)
                    if max(t) < MAX: ret.add(t)
            return ret
        while True:
            new = step(cur)
            if new == cur: break
            cur = new
        return sorted({n for triple in cur for n in triple})[:len]
    print(MarkovNumbers(len=42))  # Peter Luschny, Aug 10 2025

Extensions

Name clarified by Wolfdieter Lang, Jan 22 2015

A256395 Composite Markoff numbers.

Original entry on oeis.org

34, 169, 194, 610, 985, 1325, 4181, 6466, 9077, 10946, 14701, 37666, 51641, 62210, 75025, 135137, 195025, 196418, 294685, 499393, 646018, 925765, 1136689, 1278818, 1346269, 1441889, 2012674, 2423525, 3524578, 4400489, 6625109, 7453378, 8399329, 9227465, 9647009
Offset: 1

Views

Author

Jonathan Sondow, Apr 30 2015

Keywords

Comments

Bourgain, Gamburd, and Sarnak have announced a proof that almost all Markoff numbers A002559 are composite. Equivalently, the prime Markoff numbers A178444 have density zero among all Markoff numbers. (It is conjectured that infinitely many Markoff numbers are prime.)
See A002559 for references, links, and additional comments.

Crossrefs

Intersection of A002808 and A002559.
Complement of (A178444 union {1}) in A002559.

Programs

  • Mathematica
    Rest[Select[m = {1};
      Do[x = m[[i]]; y = m[[j]]; a = (3*x*y + Sqrt[-4*x^2 - 4*y^2 + 9*x^2*y^2])/2;
        b = (3*x*y + Sqrt[-4*x^2 - 4*y^2 + 9*x^2*y^2])/2;
       If[IntegerQ[a], m = Union[Join[m, {a}]]];
       If[IntegerQ[b], m = Union[Join[m, {b}]]], {n, 8}, {i, Length[m]}, {j, i}];
      Take[m, 50], ! PrimeQ[#] &]]
  • SageMath
    def A386894List(len: int = 50, MAX: int = 10**10) -> list[int]:
        # Using function 'MarkovNumbers' from A002559.
        M = MarkovNumbers(len, MAX)
        U = set([])
        for m in M:
            if not is_prime(ZZ(m)):
                U.add(m)
        return sorted(U)[1:len]
    # Balance required sequence length and search depth.
    print(A386894List(len=56))  # Peter Luschny, Aug 12 2025

A291694 Array of Markov triples (x,y,z) sorted by z, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 5, 1, 5, 13, 2, 5, 29, 1, 13, 34, 1, 34, 89, 2, 29, 169, 5, 13, 194, 1, 89, 233, 5, 29, 433, 1, 233, 610, 2, 169, 985, 13, 34, 1325, 1, 610, 1597, 5, 194, 2897, 1, 1597, 4181, 2, 985, 5741, 5, 433, 6466, 13, 194, 7561, 34, 89, 9077, 1, 4181, 10946, 29, 169, 14701
Offset: 1

Views

Author

Jean-François Alcover, Aug 30 2017

Keywords

Comments

The positive integers x, y, z satisfy the Diophantine equation x^2 + y^2 + z^2 = 3*x*y*z, 1 <= x <= y <= z.

Examples

			The array of Markov triples begins:
  (1,  1,  1),
  (1,  1,  2),
  (1,  2,  5),
  (1,  5, 13),
  (2,  5, 29),
  (1, 13, 34),
  ...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.31.3 Markov-Hurwitz Equation, p. 200.

Crossrefs

Cf. A002559 (main entry for this sequence), A178444, A256395, A261613, A351372.

Programs

  • Mathematica
    triples = 30; depth0 = 10 (* adjust depth according to message after first run *) ; Clear[zz, fx, fy]; fx[1] = fy[1] = fx[2] = fy[2] = fx[5] = 1;
    fy[5] = 2; zz[n_] := zz[n] = Module[{f, x, y, z}, f[] = {1, 2, 5}; f[ud___, u(*up*)] := f[ud, u] = Module[{g = f[ud]}, x = g[[1]]; y = g[[3]]; z = 3*g[[1]]*g[[3]] - g[[2]]; fx[z] = x; fy[z] = y; {x, y, z}]; f[ud___, d(*down*)] := f[ud, d] = Module[{g = f[ud]}, x = g[[2]]; y = g[[3]]; z = 3*g[[2]]*g[[3]] - g[[1]]; fx[z] = x; fy[z] = y; {x, y, z}]; f @@@ Tuples[{u, d}, n] // Flatten // Union // PadRight[#, triples]&]; zz[n = depth0]; zz[n++]; While[zz[n] != zz[n - 1], n++]; Print["depth = n = ", n]; xyz = {fx[#], fy[#], #} & /@ zz[n]; Flatten[xyz]
  • PARI
    N=5000;
    for(k=1, N, for(j=1, k, for(i=1, j, if(i*j>k, break); if(i^2+j^2+k^2==3*i*j*k, print1(i, ", ", j, ", ", k, ", "))))); \\ Seiichi Manyama, Feb 16 2022

A173957 Numbers n such that x^2+y^2+prime(n)^2=3*x*y*prime(n).

Original entry on oeis.org

1, 3, 6, 10, 24, 51, 84, 251, 419, 755, 960, 3121, 3582, 4515, 9299, 35878, 42613, 127165, 211625, 235352, 5457937, 17353542, 23023556
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 03 2010

Keywords

Examples

			a(1)=1 because 1^2+5^2+prime(1)^2=3*1*5*prime(1); a(2)=3 because 1^2+2^2+prime(3)^2=3*1*2*prime(3); a(3)=6 because 29^2+34^2+prime(6)^2=3*29*34*prime(6); a(4)=10 because 13^2+34^2=prime(10)^2=3*13*34*prime(10).
		

Crossrefs

Cf. A000040, A002559, A178444 (prime(n)).

Formula

{n: A000040(n) in A002559}. [From R. J. Mathar, Mar 09 2010]

Extensions

Extended beyond 960 by R. J. Mathar, Mar 09 2010

A182585 Markov numbers that are semiprime.

Original entry on oeis.org

34, 169, 194, 985, 4181, 9077, 14701, 51641, 135137, 294685, 499393, 646018, 925765, 1136689, 1346269, 2012674, 6625109, 8399329, 9647009, 11485154, 16964653, 21531778, 43484701, 48928105, 111242465, 137295677, 144059117, 165580141, 225058681, 253191266
Offset: 1

Views

Author

Jonathan Vos Post, May 06 2012

Keywords

Comments

This is to A178444 as semiprimes A001358 are to primes A000040.

Examples

			194 is in this sequence because it is a Markoff (or Markov) number, and 194 = 2 * 97.
		

Crossrefs

Formula

A001358 Intersection A002559. {x, y, or z satisfying x^2 + y^2 + z^2 = 3xyz, also such that A001222(of that number) = 2}.

A339062 Sorted list of prime numbers in the union of 7-tuples (a,b,c,d,e,f,g) satisfying a^2 + b^2 + c^2 + d^2 + e^2 + f^2 + g^2 = a*b*c*d*e*f*g.

Original entry on oeis.org

2, 3, 5, 23, 37, 67, 181, 307, 359, 1559, 2417, 59123, 88327, 95783, 99907, 304151, 606839, 932999, 1179491, 1531619, 1860337, 2188919, 2363441, 3578437, 5474849, 7577351, 11273459, 12994823, 32393057, 48222721, 127896599, 248648401, 932998067, 1109123111, 2671715093, 4488932999, 9347244311
Offset: 1

Views

Author

Giorgos Kalogeropoulos, Nov 22 2020

Keywords

Comments

Prime numbers that appear in the integer solutions {X(1),X(2),...X(n)} of Markoff-Hurwitz equation X(1)^2 + ... + X(n)^2 = a*X(1)*...*X(n) for a=1 and n=7.
7-tuples that are solutions of the above equation consisting only of primes appear to be very rare. In this special case the number N=X(1)*...*X(7) is equal to the sum of the squares of its prime factors (with multiplicity).
Giorgos Kalogeropoulos has found two numbers N having 123 and 163 digits respectively.
The factors of the first one are {2, 2, 2, 23, 1109123111, 57766182616657495290612267717977498812931942308391, 11788844704086155814066994795339207139099517865226893357415731}, so this 7-tuple is a solution and all these primes belong to the sequence. (See Rivera's link for the second 7-tuple).

Examples

			{1, 1, 2, 2, 3, 23, 274} is a solution to the equation. So the primes 2,3,23 are terms of the sequence.
		

Crossrefs

Showing 1-6 of 6 results.