cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A178476 Permutations of 123456: Numbers having each of the decimal digits 1,...,6 exactly once, and no other digit.

Original entry on oeis.org

123456, 123465, 123546, 123564, 123645, 123654, 124356, 124365, 124536, 124563, 124635, 124653, 125346, 125364, 125436, 125463, 125634, 125643, 126345, 126354, 126435, 126453, 126534, 126543, 132456, 132465, 132546, 132564, 132645, 132654
Offset: 1

Views

Author

M. F. Hasler, May 28 2010

Keywords

Comments

This finite sequence contains 6!=720 terms.
This is a subsequence of A030299, consisting of elements A030299(154)..A030299(873).
If individual digits are be split up into separate terms, we get a subsequence of A030298.
It would be interesting to conceive simple and/or efficient functions which yield (a) the n-th term of this sequence: f(n)=a(n), (b) for a given term, the subsequent one: f(a(n)) = a(1 + (n mod 6!)).
The expression a(n+6) - a(n) takes only 18 different values for n = 1..6!-6.
An efficient procedure for generating the n-th term of this sequence can be found at A178475. - Nathaniel Johnston, May 19 2011
From Hieronymus Fischer, Feb 13 2013: (Start)
The sum of all terms as decimal numbers is 279999720.
General formula for the sum of all terms (interpreted as decimal permutational numbers with exactly d different digits from the range 1..d < 10): sum = (d+1)!*(10^d-1)/18.
If the terms are interpreted as base-7 numbers the sum is 49412160.
General formula for the sum of all terms of the corresponding sequence of base-p permutational numbers (numbers with exactly p-1 different digits excluding the zero digit): sum = (p-2)!*(p^p-p)/2. (End)

Crossrefs

Programs

  • Mathematica
    Take[FromDigits/@Permutations[Range[6]],40] (* Harvey P. Dale, Jun 05 2012 *)
  • PARI
    v=vector(6,i,10^(i-1))~; A178476=vecsort(vector(6!,i,numtoperm(6,i)*v));
    is_A178476(x)= { vecsort(Vec(Str(x)))==Vec("123456") }
    forstep( m=123456,654321,9, is_A178476(m) & print1(m","))

Formula

a(n) + a(6! + 1 - n) = 777777.
floor( a(n) / 10^5 ) = ceiling( n / 5! ).
a(n) = A030299(n+153).
a(n) == 3 (mod 9).
a(n) = 3 + 9*A178486(n).

A178485 (A178475(n)-6)/9.

Original entry on oeis.org

1371, 1372, 1381, 1383, 1392, 1393, 1471, 1472, 1491, 1494, 1502, 1504, 1581, 1583, 1591, 1594, 1613, 1614, 1692, 1693, 1702, 1704, 1713, 1714, 2371, 2372, 2381, 2383, 2392, 2393, 2571, 2572, 2601, 2605, 2612, 2615, 2681, 2683, 2701, 2705, 2723, 2725
Offset: 1

Views

Author

M. F. Hasler, May 28 2010

Keywords

Comments

There are 5!=120 terms in this finite sequence. Its origin is the fact that numbers whose decimal expansion is a permutation of 12345 are all of the form 9k+6.

Crossrefs

Programs

  • PARI
    v=vector(5,i,10^(i-1))~; vecsort(vector(5!,i,numtoperm(5,i)*v))
    is_A178475(x)= { vecsort(Vec(Str(x)))==Vec("12345") }
    forstep( m=12345,54321,9, is_A178475(m) & print1(m","))

Formula

a(n) + a(5!+1-n) = 7406.
a(n) == 1, 2, 3, 4 or 5 (mod 10).
a(n+6)-a(n) is an element of { 100, 110, 111, 200, 220, 222, 679 }.
a(n+6)-a(n) = 679 iff (n-1)%24 > 17, where % denotes the remainder upon division.
a(n+6)-a(n) = 200, 220 or 222 iff (n-1)%30 > 23, i.e. n==25,...,30 (mod 30).

A191820 A178478(n)/9.

Original entry on oeis.org

1371742, 1371743, 1371752, 1371754, 1371763, 1371764, 1371842, 1371843, 1371862, 1371865, 1371873, 1371875, 1371952, 1371954, 1371962, 1371965, 1371984, 1371985, 1372063, 1372064, 1372073, 1372075, 1372084, 1372085, 1372742, 1372743, 1372752
Offset: 1

Views

Author

Nathaniel Johnston, Jun 24 2011

Keywords

Comments

There are 8!=40320 terms in this finite sequence. Its origin is the fact that numbers whose decimal expansion is a permutation of 12345678 are all divisible by 9.

Crossrefs

A191819 (A178477(n)-1)/9.

Original entry on oeis.org

137174, 137175, 137184, 137186, 137195, 137196, 137274, 137275, 137294, 137297, 137305, 137307, 137384, 137386, 137394, 137397, 137416, 137417, 137495, 137496, 137505, 137507, 137516, 137517, 138174, 138175, 138184, 138186, 138195, 138196, 138374, 138375, 138404
Offset: 1

Views

Author

Nathaniel Johnston, Jun 24 2011

Keywords

Comments

The sequence is motivated by the fact that numbers whose decimal expansion is a permutation of 1234567 are all of the form 9k+1.

Crossrefs

Showing 1-4 of 4 results.