cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178529 Self-convolution square-root of A008977, where A008977(n) = (4n)!/(n!)^4.

Original entry on oeis.org

1, 12, 1188, 170544, 28779300, 5318414640, 1041818334480, 212530940233920, 44671347000417060, 9607097095645249200, 2103954263946309574800, 467599488149125265169600, 105196895958882375628016400
Offset: 0

Views

Author

Paul D. Hanna, Dec 23 2010

Keywords

Comments

In Narumiya and Shiga on bottom of page 157 the g.f. is given as an integral. On page 158 the square of the g.f. is given as a hypergeometric function. - Michael Somos, Aug 12 2014

Examples

			G.f.: A(x) = 1 + 12*x + 1188*x^2 + 170544*x^3 + 28779300*x^4 +...
A(x)^2 = 1 + 24*x + 2520*x^2 + 369600*x^3 +...+ (4n)!/(n!)^4*x^n +...
		

References

  • N. Narumiya and H. Shiga, "The mirror map for a family of K3 surfaces induced from the simplest 3-dimensional reflexive polytope", Proceedings on Moonshine and related topics (MontrĂ©al, QC, 1999), 139-161, CRM Proc. Lecture Notes, 30, Amer. Math. Soc., Providence, RI, 2001. MR1877764 (2002m:14030)

Crossrefs

Cf. A008977.

Programs

  • Mathematica
    Table[4^n/(n!)^2*Product[(8*k + 1)*(8*k + 3), {k, 0, n - 1}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 07 2014 *)
    a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/8, 3/8, 1, 256 x], {x, 0, n}]; (* Michael Somos, Aug 12 2014 *)
    a[ n_] := 256^n / n!^2 Pochhammer[ 1/8, n] Pochhammer[ 3/8, n]; (* Michael Somos, Aug 12 2014 *)
  • PARI
    {a(n)=4^n*prod(k=0,n-1,(8*k+1)*(8*k+3))/(n!)^2}
    
  • PARI
    {a(n)=polcoeff(sqrt(sum(k=0,n,(4*k)!/(k!)^4*x^k)+x*O(x^n)),n)}

Formula

a(n) = 4^n/(n!)^2 * Product_{k=0..n-1} (8*k+1)*(8*k+3).
a(n) = 2^(8*n) * GAMMA(n+1/8) * GAMMA(n+3/8) /(GAMMA(1/8)*GAMMA(3/8) *GAMMA(n+1)^2). - Vaclav Kotesovec, Mar 07 2014
a(n) ~ GAMMA(5/8)*GAMMA(7/8) * 2^(8*n-3/2) / (Pi^2 * n^(3/2)). - Vaclav Kotesovec, Mar 07 2014
G.f.: F( 1/8, 3/8, 1; x) = 1 / B(3/8, 5/8) * integral_0^1 (u^5 * (1-u)^3 * (1-x*u))^(-1/8) du. - Michael Somos, Aug 12 2014
Convolution square is A008977. - Michael Somos, Aug 12 2014