cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A242107 Reduced division polynomials associated with elliptic curve y^2 + x*y = x^3 - x^2 - x + 1 and multiples of point (0, 1).

Original entry on oeis.org

0, 1, 1, 1, 1, -1, 2, -3, 1, -5, -7, -13, -16, 11, -57, 131, -113, 389, 670, 2311, 3983, 9, 23647, -81511, 140576, -484247, -833503, -5751815, -14871471, -17124617, -147165662, 710017141, -2273917871, 9644648819, 11396432249, 204006839259, 808162720720
Offset: 0

Views

Author

Michael Somos, Aug 15 2014

Keywords

Comments

This sequence is similar to Somos-5 (A006721).
For the elliptic curve "58a1" and point (0, 1) the multiple n*(0, 1) = ((3-(-1)^n)/2 * a(n+1)*a(n-1) / a(n)^2, a(n+2)^2 * a(n-4) / a(n)^3). - Michael Somos, Feb 23 2020

Examples

			a(9) = -5 and the point multiple 9*(0, 1) = (-14/(-5)^2, -169/(-5)^3).
		

Crossrefs

Programs

  • Magma
    I:=[1,1,1,1,-1]; [0] cat [n le 5 select I[n] else (-Self(n-1)* Self(n-4) + Self(n-2)*Self(n-3))/Self(n-5): n in [1..30]]; // G. C. Greubel, Aug 05 2018
  • Mathematica
    Join[{0}, RecurrenceTable[{a[n] == (-a[n-1]*a[n-4] + a[n-2]*a[n-3])/a[n-5], a[0] == 0, a[1] == 1, a[2] == 1, a[3] == 1, a[4] == 1, a[5] == -1}, a, {n, 0, 50}]] (* G. C. Greubel, Aug 05 2018 *)
  • PARI
    {a(n) = my(s=1, v); if( n<0, s=-1; n=-n); s^(n+1) * if( n, v = vector(n, k, 1); if( n<6, (-1)^(n>4), v[5] = -1; for(k=6, n, v[k] = (-v[k-1] * v[k-4] + v[k-2] * v[k-3]) / v[k-5]); v[n]))};
    
  • PARI
    {a(n) = sign(n) * subst(elldivpol(ellinit([1, -1, 0, -1, 1]), abs(n)), x, 0) / (if(n%2, 1, 2) * (-1)^((n-1)\2) * 2^(n^2\4))}; /* Michael Somos, Feb 23 2020 */
    
  • PARI
    {a(n) = my(E=ellinit([1, -1, 0, -1, 1]), z=ellpointtoz(E, [0, 1])); (-1)^(n\2) * round(ellsigma(E, n*z) / (ellsigma(E, z)^n^2 * 2^(n^2\4))) }; /* Michael Somos, Feb 25 2020 */
    
  • Python
    from gmpy2 import divexact
    A242107 = [0,1,1,1,1,-1]
    for n in range(6,30):
        A242107.append(int(divexact(-A242107[n-1]*A242107[n-4]+A242107[n-2]*A242107[n-3],A242107[n-5])))
    print(A242107) # Chai Wah Wu, Aug 15 2014
    

Formula

a(n) = -(-1)^n * a(-n) for all n in Z.
0 = a(n)*a(n+5) + a(n+1)*a(n+4) - a(n+2)*a(n+3) for all n in Z.
0 = a(n)*a(n+7) - a(n+1)*a(n+6) - 2*a(n+2)*a(n+5) for all n in Z.
0 = a(n)*a(n+4) + a(n+1)*a(n+3) - a(n+2)*a(n+2) for all even n in Z.
0 = a(n)*a(n+4) + 2*a(n+1)*a(n+3) - a(n+2)*a(n+2) for all odd n in Z.
abs(a(n)) = A242108(n) for all n in Z.
a(2*n) = A178622(n) for all n in Z. - Michael Somos, Aug 21 2014
a(2*n-3) = A328380(n) for all n in Z. - Michael Somos, Feb 23 2020

Extensions

Definition edited by Michael Somos, Feb 23 2020

A178628 A (1,1) Somos-4 sequence associated to the elliptic curve E: y^2 - x*y - y = x^3 + x^2 + x.

Original entry on oeis.org

1, 1, -1, -4, -3, 19, 67, -40, -1243, -4299, 25627, 334324, 627929, -29742841, -372632409, 1946165680, 128948361769, 1488182579081, -52394610324649, -2333568937567764, -5642424912729707, 3857844273728205019
Offset: 1

Views

Author

Paul Barry, May 31 2010

Keywords

Comments

a(n) is (-1)^C(n,2) times the Hankel transform of the sequence with g.f.
1/(1-x^2/(1-x^2/(1-4x^2/(1+(3/16)x^2/(1-(76/9)x^2/(1-(201/361)x^2/(1-... where
1,4,-3/16,76/9,201/361,... are the x-coordinates of the multiples of z=(0,0)
on E:y^2-xy-y=x^3+x^2+x.

Crossrefs

Programs

  • Magma
    I:=[1,1,-1,-4]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + Self(n-2)^2)/Self(n-4): n in [1..30]]; // G. C. Greubel, Sep 18 2018
    
  • Mathematica
    RecurrenceTable[{a[n] == (a[n-1]*a[n-3] +a[n-2]^2)/a[n-4], a[1] == 1, a[2] == 1, a[3] == -1, a[4] == -4}, a, {n,1,30}] (* G. C. Greubel, Sep 18 2018 *)
  • PARI
    a(n)=local(E,z);E=ellinit([ -1,1,-1,1,0]);z=ellpointtoz(E,[0,0]); round(ellsigma(E,n*z)/ellsigma(E,z)^(n^2))
    
  • PARI
    m=30; v=concat([1,1,-1,-4], vector(m-4)); for(n=5, m, v[n] = ( v[n-1]*v[n-3] +v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Sep 18 2018
    
  • PARI
    {a(n) = subst(elldivpol(ellinit([-1, 1, -1, 1, 0]), n), x ,0)}; /* Michael Somos, Jul 05 2024 */
    
  • SageMath
    @CachedFunction
    def a(n): # a = A178628
        if n<5: return (0,1,1,-1,-4)[n]
        else: return (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4)
    [a(n) for n in range(1,41)] # G. C. Greubel, Jul 05 2024

Formula

a(n) = (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4), n>4.
a(n) = -a(-n). a(n) = (-a(n-1)*a(n-4) +4*a(n-2)*a(n-3))/a(n-5) for all n in Z except n=5. - Michael Somos, Jul 05 2024

Extensions

Offset changed to 0. - Michael Somos, Jul 05 2024
Showing 1-2 of 2 results.