A178626 Convolution of Pell(n) and 10^n.
1, 12, 125, 1262, 12649, 126560, 1265769, 12658098, 126581965, 1265822028, 12658226021, 126582274070, 1265822774161, 12658227822392, 126582278418945, 1265822784660282, 12658227847739509, 126582278480139300
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..995
- Index entries for linear recurrences with constant coefficients, signature (12,-19,-10).
Programs
-
GAP
a:=[1,12,125];; for n in [4..30] do a[n]:=12*a[n-1]-19*a[n-2] - 10*a[n-3]; od; a; # G. C. Greubel, Jan 28 2019
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( x/((10*x-1)*(x^2+2*x-1)) )); // G. C. Greubel, Jan 28 2019 -
Mathematica
LinearRecurrence[{12, -19, -10}, {1, 12, 125}, 30] (* G. C. Greubel, Jan 28 2019 *)
-
PARI
my(x='x+O('x^30)); Vec( x/((10*x-1)*(x^2+2*x-1)) ) \\ G. C. Greubel, Jan 28 2019
-
Sage
a=(x/((10*x-1)*(x^2+2*x-1))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jan 28 2019
Formula
a(n) = 10*a(n-1) + Pell(n) with a(1)= Pell(1) = 1.
From R. J. Mathar, May 31 2010: (Start)
a(n) = +12*a(n-1) -19*a(n-2) -10*a(n-3).
G.f.: x/ ( (10*x-1)*(x^2+2*x-1) ). (End)
a(n) = (2^(3+n)*5^(1+n) + (1-sqrt(2))^n*(-20+11*sqrt(2)) - (1+sqrt(2))^n*(20+11*sqrt(2))) / 316. - Colin Barker, Jan 29 2019
Extensions
a(10), a(11) corrected and sequence extended by R. J. Mathar, May 31 2010
Comments