A255010 a(n) = A099795(n)^-1 mod prime(n).
1, 2, 3, 2, 1, 10, 7, 15, 20, 1, 14, 19, 11, 23, 6, 11, 45, 42, 37, 34, 10, 29, 76, 77, 14, 71, 12, 88, 40, 22, 30, 75, 115, 59, 110, 14, 113, 154, 13, 154, 142, 40, 50, 25, 71, 16, 11, 18, 91, 174, 138, 35, 115, 38, 27, 195, 206, 113, 75, 119, 181, 111, 203
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Umberto Cerruti, Il Teorema Cinese dei Resti (in Italian), 2015. The sequence is on page 21.
- Eric Weisstein's World of Mathematics, Modular Inverse
Programs
-
Magma
[Modinv(Lcm([1..p-1]),p): p in PrimesUpTo(400)];
-
Maple
with(numtheory): P:=proc(q) local a, n; a:=[]; for n from 1 to q do a:=[op(a),n]; if isprime(n+1) then print(lcm(op(a))^(-1) mod (n+1)); fi; od; end: P(10^3); # Paolo P. Lava, Feb 16 2015
-
Mathematica
r[k_] := LCM @@ Range[k]; t[k_] := PowerMod[r[k - 1], -1, k]; Table[t[Prime[n]], {n, 1, 70}]
-
PARI
a(n) = lift(1/Mod(lcm(vector(prime(n)-1, k, k)), prime(n))); \\ Michel Marcus, Feb 13 2015
-
Sage
[inverse_mod(lcm([1..p-1]),p) for p in primes(400)]
Comments