A178674 a(n) = 3^n + 3.
4, 6, 12, 30, 84, 246, 732, 2190, 6564, 19686, 59052, 177150, 531444, 1594326, 4782972, 14348910, 43046724, 129140166, 387420492, 1162261470, 3486784404, 10460353206, 31381059612, 94143178830, 282429536484, 847288609446, 2541865828332, 7625597484990, 22876792454964
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-3).
Programs
-
GAP
List([0..40], n -> 3^n+3); # G. C. Greubel, Jan 27 2019
-
Magma
[3^n+3: n in [0..35]];
-
Mathematica
Table[3^n+3, {n, 0, 40}] (* or *) CoefficientList[Series[(4-10x)/((1-x) (1-3x)), {x, 0, 30}], x] (* Vincenzo Librandi, May 13 2014 *)
-
PARI
a(n)=3^n+3 \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[3^n+3 for n in range(40)] # G. C. Greubel, Jan 27 2019
Formula
a(n) = 3*(a(n-1) - 2), a(0)=4.
From R. J. Mathar, Jan 05 2011: (Start)
G.f.: (4-10*x)/((1-3*x)*(1-x)).
a(n) = 2*A115098(n). (End)
a(n) = 4*a(n-1) - 3*a(n-2) for n > 1. - Vincenzo Librandi, May 13 2014
E.g.f.: exp(x)*(exp(2*x) + 3). - Elmo R. Oliveira, Apr 02 2025
Comments