cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178739 Product of the 4th power of a prime (A030514) and a different prime (p^4*q).

Original entry on oeis.org

48, 80, 112, 162, 176, 208, 272, 304, 368, 405, 464, 496, 567, 592, 656, 688, 752, 848, 891, 944, 976, 1053, 1072, 1136, 1168, 1250, 1264, 1328, 1377, 1424, 1539, 1552, 1616, 1648, 1712, 1744, 1808, 1863, 1875, 2032, 2096, 2192, 2224, 2349, 2384, 2416, 2511
Offset: 1

Views

Author

Will Nicholes, Jun 08 2010

Keywords

Comments

Subsequence of A030628.

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,4}; Select[Range[10000], f] (* Vladimir Joseph Stephan Orlovsky, May 03 2011 *)
    max = 500000; A178739 = DeleteCases[Union[Table[Prime[p] Prime[q]^4 Boole[p != q], {p, PrimePi[max/16]}, {q, PrimePi[max/2]}]], 0]; Take[A178739, 50] (* Alonso del Arte, Aug 05 2012 *)
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2,(lim\2)^(1/4), t=p^4; forprime(q=2,lim\t, if(p==q,next); listput(v,t*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from sympy import primepi, primerange, integer_nthroot
    def A178739(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p**4) for p in primerange(integer_nthroot(x,4)[0]+1))+primepi(integer_nthroot(x,5)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

a(n) ~ kn log n with k = 1/P(4) = 1/A085964 = 12.98817.... - Charles R Greathouse IV, Feb 23 2017