cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178759 Expansion of e.g.f. 3*x*exp(x)*(exp(x)-1)^2.

Original entry on oeis.org

0, 0, 0, 18, 144, 750, 3240, 12642, 46368, 163350, 559800, 1881066, 6229872, 20406750, 66273480, 213759090, 685601856, 2188698150, 6959413080, 22053083514, 69672773520, 219535296750, 690106487400, 2164714299138, 6777100916064, 21179698653750, 66083277045240, 205880260458762
Offset: 0

Views

Author

Geoffrey Critzer, Dec 26 2010

Keywords

Comments

a(n) is the sum of the digits in ternary sequences of length n, in which each element of the alphabet, {0,1,2} appears at least once in the sequence.
Generally, the e.g.f. for such sum of n-ary sequences (taken on an alphabet of {0,1,2,...,n-1}) is binomial(n,2)*x*exp(x)*(exp(x)-1)^(n-1).
Cf. A058877 which is the sum of the digits in such binary sequences.

Examples

			a(3)=18 because there are six length 3 sequences on {0,1,2} that contain at least one 0, at least one 1 and at least one 2: (0,1,2),(0,2,1),(1,0,2),(1,2,0),(2,0,1),(2,1,0).  The digits sum to 18.
		

Crossrefs

Programs

  • GAP
    List([0..30], n -> (3^n - 3*2^n + 3)*n); # G. C. Greubel, Jan 24 2019
  • Magma
    [(3^n - 3*2^n + 3)*n: n in [0..30]]; // G. C. Greubel, Jan 24 2019
    
  • Mathematica
    Range[0,20]! CoefficientList[Series[3x Exp[x](Exp[x]-1)^2,{x,0,20}],x]
    Table[(3^n -3*2^n +3)*n, {n,0,30}] (* G. C. Greubel, Jan 24 2019 *)
  • PARI
    my(x='x+O('x^30)); concat([0,0,0],Vec(serlaplace(3*x*exp(x)*(exp(x)-1)^2))) \\ Joerg Arndt, May 13 2013
    
  • PARI
    concat([0,0,0], Vec(6*x^3*(11*x^2-12*x+3)/((x-1)^2*(2*x-1)^2*(3*x-1)^2) + O(x^100))) \\ Colin Barker, Nov 30 2014
    
  • PARI
    vector(30, n, n--; (3^n - 3*2^n + 3)*n) \\ G. C. Greubel, Jan 24 2019
    
  • Sage
    [(3^n - 3*2^n + 3)*n for n in (0..30)] # G. C. Greubel, Jan 24 2019
    

Formula

E.g.f.: 3*x*exp(x)*(exp(x)-1)^2.
a(n) = (3^n - 3*2^n + 3)*n. - Mark van Hoeij, May 13 2013
G.f.: 6*x^3*(11*x^2-12*x+3) / ((x-1)^2*(2*x-1)^2*(3*x-1)^2). - Colin Barker, Nov 30 2014