A178797 Number of regular octahedra that can be formed using the points in an (n+1)X(n+1)X(n+1) lattice cube.
0, 1, 8, 32, 104, 261, 544, 1000, 1696, 2759, 4296, 6434, 9352, 13243, 18304, 24774, 32960, 43223, 55976, 71752, 90936, 113973, 141312, 173436, 210960, 254587, 305000, 364406, 432824, 511421, 600992, 702556, 817200, 946131, 1090392, 1251238
Offset: 1
Keywords
Examples
a(2)=1 because there is 1 way to form a regular octahedron using points of a {0,1,2}^3 lattice cube.
Links
- Eugen J. Ionascu, Table of n, a(n) for n = 1..100
- Eugen J. Ionascu, Counting all regular octahedra in {0,1,...,n}^3, arXiv:1007.1655 [math.NT], 2010.
- Eugen J. Ionascu, Andrei Markov, Platonic solids in Z^3, Journal of Number Theory, Volume 131, Issue 1, January 2011, Pages 138-145.
Extensions
Edited by Ray Chandler, Jul 27 2010