A178805 Numbers k such that ||k/log(k)|| reaches a new minimum, where ||x|| is the distance from x to the nearest integer.
2, 5, 9, 13, 17, 163, 53453, 110673, 715533, 1432276, 6517719, 11523158, 11985596, 24102781, 254977309, 451207448, 1219588338, 2048539023, 10066616717, 42116139191, 47657002570, 73831354169, 122478947521, 143949453227, 3040705645816, 3152420311977, 5624690531099, 14964977749017, 25999244327633, 92799025313425, 164330745650026, 604329910739082
Offset: 1
Keywords
Links
- MathOverflow, Why Is 163/ln(163) a Near-Integer?
- MathOverflow, When is n/ln(n) close to an integer?
Programs
-
Mathematica
mn=Infinity; n=2; Table[While[r=N[n/Log[n]]; diff=Abs[r-Round[r]]; diff>=mn, n++ ]; mn=diff; Print[{n,mn}]; n, {9}]
Comments