A178840 Decimal expansion of the factorial of Golden Ratio.
1, 4, 4, 9, 2, 2, 9, 6, 0, 2, 2, 6, 9, 8, 9, 6, 6, 0, 0, 3, 7, 7, 8, 7, 9, 7, 9, 0, 6, 2, 9, 7, 6, 8, 3, 3, 7, 0, 8, 4, 0, 8, 9, 8, 9, 0, 9, 6, 6, 6, 7, 6, 0, 7, 5, 3, 3, 7, 0, 2, 3, 8, 5, 8, 1, 3, 8, 9, 1, 1, 8, 0, 7, 9, 4, 2, 7, 9, 7, 4, 7, 1, 9, 1, 2, 9, 4, 0, 4, 9, 1, 6, 9, 6, 5, 7, 0, 3, 1, 4, 2, 8, 5, 4, 3
Offset: 1
Examples
1.44922960226989660037787979062976833708408989096667607533702385813891...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
SetDefaultRealField(RealField(100)); Gamma((Sqrt(5)-1)/2); // G. C. Greubel, Jan 21 2019
-
Maple
evalf(GAMMA(1+evalf((1+sqrt(5))/2,100)),106); # Golden ratio
-
Mathematica
RealDigits[Gamma[(Sqrt[5] - 1)/2], 10, 120][[1]] (* Vaclav Kotesovec, Jan 20 2019 *)
-
PARI
default(realprecision, 100); gamma((sqrt(5)-1)/2) \\ G. C. Greubel, Jan 21 2019
-
Sage
numerical_approx(gamma(1/golden_ratio), digits=100) # G. C. Greubel, Jan 21 2019
Formula
Factorial of Golden Ratio = Gamma(1 + phi) = Gamma((3 + sqrt(5))/2). - Bernard Schott, Jan 21 2019
Equals Gamma((sqrt(5) - 1)/2). - Vaclav Kotesovec, Jan 21 2019