cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178852 G.f. satisfies: A(x) = x/(x - B(x^2)) where B(x/A(x)) = x and B(x) is the g.f. of A141200.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 10, 21, 37, 79, 144, 311, 580, 1262, 2393, 5236, 10055, 22095, 42857, 94495, 184784, 408557, 804331, 1782470, 3529190, 7836235, 15591086, 34676360, 69284645, 154320310, 309480750, 690193910, 1388679639, 3100467566
Offset: 0

Views

Author

Paul D. Hanna, Aug 11 2010

Keywords

Comments

The g.f. of A141200 satisfies: B(x) = x + B(B(x)^2).

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 10*x^6 + 21*x^7 +...
If B(x) = g.f. of A141200, with B(x/A(x)) = x and B(x) = x + B(B(x)^2), then
B(x) = x + x^2 + 2*x^3 + 6*x^4 + 20*x^5 + 72*x^6 + 272*x^7 +... where
x/A(x) = x - (x^2 + x^4 + 2*x^6 + 6*x^8 + 20*x^10 + 72*x^12 + 272*x^14 +...)
A(B(x)) = B(x)/x = 1 + x + 2*x^2 + 6*x^3 + 20*x^4 + 72*x^5 + 272*x^6 +...
		

Crossrefs

Cf. A141200.

Programs

  • PARI
    {a(n)=local(A=1+x+x^2*O(x^n)); for(i=0,#binary(n)+1, A=x/(x-subst(serreverse(x/A), x, x^2+x^2*O(x^n)))) ; polcoeff(A, n)}
    for(n=0,40,print1(a(n),", "))

Formula

a(n) ~ c * d^n / n^(3/2), where d = 2.20085985704067535258..., c = 4.25914484723... if n is even and c = 4.40480643955... if n is odd. - Vaclav Kotesovec, Dec 02 2014