cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A141200 G.f. satisfies: A(x) = x + A(A(x)^2).

Original entry on oeis.org

1, 1, 2, 6, 20, 72, 272, 1065, 4282, 17576, 73344, 310226, 1327036, 5730948, 24952776, 109417672, 482779032, 2141832444, 9548501992, 42753897498, 192184437012, 866963862560, 3923596330784, 17809292215406, 81055344516420
Offset: 1

Views

Author

Paul D. Hanna, Jun 12 2008, Jun 13 2008

Keywords

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 20*x^5 + 72*x^6 + 272*x^7 +...
The g.f. satisfies the series:
A(x) = x + A(x^2) + d/dx A(x^2)^2/2! + d^2/dx^2 A(x^2)^3/3! + d^3/dx^3 A(x^2)^4/4! +...
as well as the logarithmic series:
log(A(x)/x) = A(x^2)/x + [d/dx A(x^2)^3/x]/2! + [d^2/dx^2 A(x^2)^3/x]/3! + [d^3/dx^3 A(x^2)^4/x]/4! +...
Related expansions.
A(x)^2 = x^2 + 2*x^3 + 5*x^4 + 16*x^5 + 56*x^6 + 208*x^7 + 804*x^8 +...
The series reversion of A(x) equals x - A(x^2), therefore
A(x - x^2 - x^4 - 2*x^6 - 6*x^8 - 20*x^10 - 72*x^12 -...) = x.
Let G(x) = A(x)^2 then
G(G(x)) = x^4 + 4*x^5 + 16*x^6 + 64*x^7 + 260*x^8 + 1072*x^9 +...
G(G(G(x))) = x^8 + 8*x^9 + 48*x^10 + 256*x^11 + 1290*x^12 +...
where A(x) = x + G(x) + G(G(x)) + G(G(G(x))) + ...
		

Crossrefs

Cf. A141201.
Cf. A178852. [From Paul D. Hanna, Jun 18 2010]

Programs

  • Mathematica
    terms = 25; A[] = 0; Do[A[x] = x + A[A[x]^2] + O[x]^(terms+1) // Normal, terms+1]; CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Jan 09 2018 *)
    a[ n_] := If[ n < 0, 0, Module[{A = 0}, Do[ A = Normal[A] + x O[x]^k; A = x + (A /. x -> A^2), {k, n}]; SeriesCoefficient[ A, {x, 0, n}]]]; (* Michael Somos, Jul 16 2018 *)
  • Maxima
    Co(n, k, F):=if k=1 then F(n) else sum(F(i+1)*Co(n-i-1, k-1, F), i, 0, n-k); a(n):=if n=1 then 1 else sum(if 2*k>n then 0 else Co(n, 2*k, a)*a(k), k, 1, n); makelist(a(n), n, 1, 10); /*Vladimir Kruchinin, Aug 02 2011 */
    
  • Maxima
    T(n,m):=if n=m then 1 else kron_delta(n,m)+sum(binomial(m,j)*sum(if 2*k<=n-j then T(n-j,2*k)*T(k,m-j) else 0,k,m-j,n-j),j,0,m-1); makelist(T(n,1),n,1,12); /* Vladimir Kruchinin, May 02 2012 */
  • PARI
    {a(n)=local(A=x+x^2);for(i=0,n,A=serreverse(x-subst(A,x,x^2+x^2*O(x^n)))) ;polcoeff(A,n)}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+sum(m=1, n, Dx(m-1, subst(A,x,x^2+x*O(x^n))^m)/m!)+x*O(x^n)); polcoeff(A, n)}
    for(n=1,25,print1(a(n),", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x*exp(sum(m=1, n, Dx(m-1, subst(A,x,x^2+x*O(x^n))^m/x)/m!)+x*O(x^n))); polcoeff(A, n)}
    for(n=1,25,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A); if( n<0, 0, for(k=1, n, A = truncate(A) + x * O(x^k); A = x + subst(A, x, A^2)); polcoeff(A, n))}; /* Michael Somos, Jul 16 2018 */
    

Formula

G.f. A(x) satisfies:
(1) A(x - A(x^2)) = x.
(2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) A(x^2)^n / n!.
(3) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) A(x^2)^n/x / n! ).
(4) A(x) = x + G(x) + G(G(x)) + G(G(G(x))) + G(G(G(G(x)))) +... where G(x) = A(x)^2 = g.f. of A141201.
Contribution from Paul D. Hanna, Jun 18 2010: (Start)
Derivative of g.f. A(x) satisfies A'(x) = 1/(1 - 2*A(x)*A'(A(x)^2)).
Radius of convergence, r, and related values:
. r = 0.206450159053688924498041214308637032933597292895284203439137...
. A(r) = 0.350063281326319514237505104302392755865233862157808469329...
where r = A(r) - A(A(r)^2);
. A(A(r)^2) = 0.1436131222726305897394638899937557229316365692625242...
. A'(A(r)^2) = 1.428313184135166508863259733728425402891099463888244...
where A'(A(r)^2) = 1/(2*A(r)).
G.f. of A178852 is V(x) = x/(x - A(x^2)) where:
V'(A(r)) = 1/r,
V(A(x)) = A(x)/x and A(x/V(x)) = x.
(End)
Let B(x) = Sum_{n>=1} a(n)*x^(2*n), then B(x) = x^2 + B(B(x)). [From Paul D. Hanna, Jul 15 2011]
a(n) ~ c / (r^n * n^(3/2)), where c = 0.073344948246606003114646... . - Vaclav Kotesovec, Dec 02 2014

A222658 G.f. satisfies: A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} x^k * {[x^k] A(x)^n}.

Original entry on oeis.org

1, 1, 2, 3, 9, 14, 42, 67, 221, 352, 1154, 1855, 6222, 10024, 33698, 54520, 184823, 299668, 1019099, 1656234, 5654308, 9205166, 31501343, 51366338, 176178460, 287662788, 988329204, 1615679329, 5559353908, 9097789494, 31343274367, 51341385362, 177069879751, 290293269560
Offset: 0

Views

Author

Paul D. Hanna, Jun 29 2013

Keywords

Comments

Here [x^k] A(x)^n denotes the coefficient of x^k in A(x)^n.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 9*x^4 + 14*x^5 + 42*x^6 + 67*x^7 +...
Related expansions:
A(x)^2 = 1 + 2*x + 5*x^2 + 10*x^3 + 28*x^4 + 58*x^5 + 157*x^6 +...
A(x)^3 = 1 + 3*x + 9*x^2 + 22*x^3 + 63*x^4 + 153*x^5 + 416*x^6 +...
A(x)^4 = 1 + 4*x + 14*x^2 + 40*x^3 + 121*x^4 + 328*x^5 + 926*x^6 +...
A(x)^5 = 1 + 5*x + 20*x^2 + 65*x^3 + 210*x^4 + 621*x^5 + 1840*x^6 +...
A(x)^6 = 1 + 6*x + 27*x^2 + 98*x^3 + 339*x^4 + 1080*x^5 + 3368*x^6 +...
GENERATING METHOD.
The initial terms, k=0..n, of the n-th power of g.f. A(x) begin:
n=0: [1];
n=1: [1, 1];
n=2: [1, 2, 5];
n=3: [1, 3, 9, 22];
n=4: [1, 4, 14, 40, 121];
n=5: [1, 5, 20, 65, 210, 621];
n=6: [1, 6, 27, 98, 339, 1080, 3368];
n=7: [1, 7, 35, 140, 518, 1764, 5789, 18138];
n=8: [1, 8, 44, 192, 758, 2744, 9464, 31120, 99489];
n=9: [1, 9, 54, 255, 1071, 4104, 14850, 51093, 169884, 547321];
n=10:[1, 10, 65, 330, 1470, 5942, 22515, 80860, 279290, 932540, 3033585]; ...
from which the antidiagonal sums form this sequence:
a(0) = 1;
a(1) = 1;
a(2) = 1 + 1 = 2;
a(3) = 1 + 2 = 3;
a(4) = 1 + 3 + 5 = 9;
a(5) = 1 + 4 + 9 = 14;
a(6) = 1 + 5 + 14 + 22 = 42;
a(7) = 1 + 6 + 20 + 40 = 67; ...
ALTERNATE GENERATING METHOD.
Define G(x) such that G(x) = A(x*G(x)) = (1/x)*Series_Reversion(x/A(x)):
G(x) = 1 + x + 3*x^2 + 10*x^3 + 42*x^4 + 180*x^5 + 827*x^6 + 3890*x^7 + 18876*x^8 + 93254*x^9 + 468727*x^10 +...
then A(x) = (1  + x^2*G'(x^2)/G(x^2)) / (1 - x*G(x^2)).
Note that 1  + x^2*G'(x^2)/G(x^2) begins:
1 + x^2 + 5*x^4 + 22*x^6 + 121*x^8 + 621*x^10 + 3368*x^12 +...
where the coefficients form the main diagonal of the above triangle.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,x^m*sum(k=0,m,x^k*polcoeff((A+x*O(x^m))^m,k))+x*O(x^n)));polcoeff(A,n)}
    for(n=0,40,print1(a(n),", "))
    
  • PARI
    /* ALTERNATE GENERATING METHOD (faster) */
    {a(n)=local(A=1+x,G=1);for(i=0,#binary(n)+1,G=1/x*serreverse(x/A+x^2*O(x^n));A=(1+x^2*subst(G'/G,x,x^2))/(1-x*subst(G,x,x^2)));polcoeff(A,n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f. satisfies: A(x) = (1 + x^2*G'(x^2)/G(x^2)) / (1 - x*G(x^2)), where A(x) = G(x/A(x)) and G(x) = A(x*G(x)) = (1/x)*Series_Reversion(x/A(x)).
a(n) ~ c * d^n / sqrt(n), where d = 2.413348608405787... , c = 0.59082988060... if n is even and c = 0.40808981489... if n is odd. - Vaclav Kotesovec, Nov 29 2014
Showing 1-2 of 2 results.