A178852
G.f. satisfies: A(x) = x/(x - B(x^2)) where B(x/A(x)) = x and B(x) is the g.f. of A141200.
Original entry on oeis.org
1, 1, 1, 2, 3, 6, 10, 21, 37, 79, 144, 311, 580, 1262, 2393, 5236, 10055, 22095, 42857, 94495, 184784, 408557, 804331, 1782470, 3529190, 7836235, 15591086, 34676360, 69284645, 154320310, 309480750, 690193910, 1388679639, 3100467566
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 10*x^6 + 21*x^7 +...
If B(x) = g.f. of A141200, with B(x/A(x)) = x and B(x) = x + B(B(x)^2), then
B(x) = x + x^2 + 2*x^3 + 6*x^4 + 20*x^5 + 72*x^6 + 272*x^7 +... where
x/A(x) = x - (x^2 + x^4 + 2*x^6 + 6*x^8 + 20*x^10 + 72*x^12 + 272*x^14 +...)
A(B(x)) = B(x)/x = 1 + x + 2*x^2 + 6*x^3 + 20*x^4 + 72*x^5 + 272*x^6 +...
-
{a(n)=local(A=1+x+x^2*O(x^n)); for(i=0,#binary(n)+1, A=x/(x-subst(serreverse(x/A), x, x^2+x^2*O(x^n)))) ; polcoeff(A, n)}
for(n=0,40,print1(a(n),", "))
A275755
G.f. satisfies: A(x) = x + A( A(x)^2 - A(x)^5 ).
Original entry on oeis.org
1, 1, 2, 6, 19, 65, 234, 873, 3346, 13099, 52154, 210541, 859768, 3545263, 14741148, 61736903, 260192880, 1102704585, 4696416190, 20090502706, 86285786519, 371917832707, 1608317086940, 6975728777332, 30338392601498, 132277349730004, 578075052215714, 2531710609461484, 11109852467209553, 48843541287179595, 215108137824940916, 948874606956945665, 4191979050580762418, 18545890698661636784, 82159569800859439840, 364432560308538162214, 1618431087549954575022
Offset: 1
G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 19*x^5 + 65*x^6 + 234*x^7 + 873*x^8 + 3346*x^9 + 13099*x^10 + 52154*x^11 + 210541*x^12 + 859768*x^13 + 3545263*x^14 +...
such that A(x) = x + A( A(x)^2 - A(x)^5 ).
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 5*x^4 + 16*x^5 + 54*x^6 + 192*x^7 + 710*x^8 + 2702*x^9 + 10515*x^10 + 41660*x^11 + 167483*x^12 + 681532*x^13 + 2801816*x^14 +...
A(x)^5 = x^5 + 5*x^6 + 20*x^7 + 80*x^8 + 320*x^9 + 1286*x^10 + 5210*x^11 + 21285*x^12 + 87655*x^13 + 363660*x^14 + 1518952*x^15 +...
A(x^2 - x^5) = x^2 + x^4 - x^5 + 2*x^6 - 2*x^7 + 6*x^8 - 6*x^9 + 20*x^10 - 24*x^11 + 71*x^12 - 95*x^13 + 270*x^14 - 392*x^15 + 1063*x^16 - 1662*x^17 +...
where Series_Reversion(A(x)) = x - A(x^2 - x^5).
-
{a(n) = my(A=x); for(i=1,n, A = x + subst(A,x, A^2 - A^5 +x*O(x^n))); polcoeff(A,n)}
for(n=1,40,print1(a(n),", "))
A275756
G.f. satisfies: A(x) = x + A( A(x)^2 - A(x)^6 ).
Original entry on oeis.org
1, 1, 2, 6, 20, 71, 264, 1018, 4032, 16305, 67042, 279444, 1178088, 5014596, 21521488, 93027025, 404630318, 1769704106, 7778030834, 34335337802, 152168657438, 676796514510, 3019945599904, 13515300673984, 60649985907334, 272847379282493, 1230295797205452, 5559373120441048, 25171114275512520, 114177375142080814, 518806321789317040, 2361183952087172306, 10762422470020855820, 49125407360603361370, 224533932290057629076, 1027553322543206612019, 4708070541211739962738, 21595828228486254332762
Offset: 1
G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 20*x^5 + 71*x^6 + 264*x^7 + 1018*x^8 + 4032*x^9 + 16305*x^10 + 67042*x^11 + 279444*x^12 + 1178088*x^13 + 5014596*x^14 +...
such that A(x) = x + A( A(x)^2 - A(x)^6 ).
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 5*x^4 + 16*x^5 + 56*x^6 + 206*x^7 + 786*x^8 + 3088*x^9 + 12408*x^10 + 50754*x^11 + 210639*x^12 + 884784*x^13 + 3754424*x^14 +...
A(x)^6 = x^6 + 6*x^7 + 27*x^8 + 116*x^9 + 495*x^10 + 2112*x^11 + 9035*x^12 + 38820*x^13 + 167628*x^14 + 727480*x^15 + 3172455*x^16 +...
A(x^2 - x^6) = x^2 + x^4 + x^6 + 4*x^8 + 14*x^10 + 48*x^12 + 170*x^14 + 628*x^16 + 2382*x^18 + 9202*x^20 + 36098*x^22 + 143484*x^24 + 576638*x^26 + 2339050*x^28 +...
where Series_Reversion(A(x)) = x - A(x^2 - x^6).
-
{a(n) = my(A=x); for(i=1,n, A = x + subst(A,x, A^2 - A^6 +x*O(x^n))); polcoeff(A,n)}
for(n=1,40,print1(a(n),", "))
A141201
G.f. satisfies: A(x)^(1/2) = x + A(x) + A(A(x)) + A(A(A(x))) + A(A(A(A(x)))) +...
Original entry on oeis.org
1, 2, 5, 16, 56, 208, 804, 3202, 13046, 54120, 227812, 970596, 4177436, 18136008, 79326641, 349241700, 1546401412, 6882164584, 30767887372, 138114569908, 622270344740, 2812994557488, 12755010576700, 57996678526684
Offset: 2
G.f.: A(x) = x^2 + 2*x^3 + 5*x^4 + 16*x^5 + 56*x^6 + 208*x^7 +...
A(x)^(1/2) = x + x^2 + 2*x^3 + 6*x^4 + 20*x^5 + 72*x^6 + 272*x^7 +...
Related expansions:
A(A(x)) = x^4 + 4*x^5 + 16*x^6 + 64*x^7 + 260*x^8 + 1072*x^9 +...
A(A(A(x))) = x^8 + 8*x^9 + 48*x^10 + 256*x^11 + 1290*x^12 +...
A(A(A(A(x)))) = x^16 + 16*x^17 + 160*x^18 + 1280*x^19 + 8980*x^20 +...
where A(x)^(1/2) = x + A(x) + A(A(x)) + A(A(A(x))) + ...
-
{a(n)=local(A=x+x^2);for(i=0,n,A=serreverse(x-subst(A,x,x^2+x^2*O(x^n))));polcoeff(A^2,n)}
A179486
G.f. A(x) satisfies A(x) = x + A(A(x)^3) where A(x) = Sum_{n>=1} a(n)*x^(2*n-1).
Original entry on oeis.org
1, 1, 3, 12, 56, 285, 1533, 8571, 49311, 290019, 1735845, 10538550, 64741482, 401708636, 2513837931, 15847467276, 100547976684, 641571037002, 4114313992851, 26503239829953, 171416342026944, 1112726829455289
Offset: 1
G.f.: A(x) = x + x^3 + 3*x^5 + 12*x^7 + 56*x^9 + 285*x^11 +...
A(x)^3 = x^3 + 3*x^5 + 12*x^7 + 55*x^9 + 276*x^11 + 1470*x^13 +...
The series reversion of A(x) equals x - A(x^3), therefore
x = A(x - x^3 - x^9 - 3*x^15 - 12*x^21 - 56*x^27 - 285*x^33 -...).
Let G(x) = A(x)^3 be the g.f. of A179487, then
G(G(x)) = x^9 + 9*x^11 + 63*x^13 + 411*x^15 + 2619*x^17 +...,
G(G(G(x))) = x^27 + 27*x^29 + 432*x^31 + 5364*x^33 +..., and
G(G(G(G(x)))) = x^81 + 81*x^83 + 3483*x^85 +...
where A(x) = x + G(x) + G(G(x)) + G(G(G(x))) + G(G(G(G(x)))) +...
-
Co(n,k,F):=if k=1 then F(n) else sum(F(i+1)*Co(n-i-1, k-1, F),i,0,n-k);
b(n):=if n=1 then 1 else sum(if 3*k>n then 0 else Co(n,3*k,b)*b(k),k,1, n);
a(n):=b(2*n-1);
makelist(a(n),n,1,7); [Vladimir Kruchinin, Jun 28 2011]
-
T(n,m):=if n=m then 1 else kron_delta(n,m)+sum(binomial(m,j)*sum(if 3*k<=n-j then T(n-j,3*k)*T(k,m-j) else 0,k,m-j,n-j),j,0,m-1);
makelist(T(n,1),n,1,12); [Vladimir Kruchinin, May 02 2012]
-
{a(n)=local(A=x+x^3); for(i=0, n, A=serreverse(x-subst(A, x, x^3+x^2*O(x^(2*n))))); polcoeff(A, 2*n-1)}
A295760
G.f. A(x) satisfies: A(x - A(x^2)) = x + A(x^2).
Original entry on oeis.org
1, 2, 4, 14, 52, 204, 840, 3586, 15708, 70196, 318792, 1467068, 6826360, 32062184, 151805328, 723785606, 3472055348, 16745865716, 81154862712, 394993248572, 1929956966024, 9463011127592, 46547604953424, 229631732978956, 1135868927282840, 5632406184568280, 27992869133724208, 139417039713595032, 695719759056964304, 3478120152935676720, 17417832347321830432
Offset: 1
G.f.: A(x) = x + 2*x^2 + 4*x^3 + 14*x^4 + 52*x^5 + 204*x^6 + 840*x^7 + 3586*x^8 + 15708*x^9 + 70196*x^10 + 318792*x^11 + 1467068*x^12 + 6826360*x^13 + 32062184*x^14 + 151805328*x^15 + 723785606*x^16 + 3472055348*x^17 + 16745865716*x^18 + 81154862712*x^19 + 394993248572*x^20 +...
such that A(x - A(x^2)) = x + A(x^2).
RELATED SERIES.
A(x - A(x^2)) = x + x^2 + 2*x^4 + 4*x^6 + 14*x^8 + 52*x^10 + 204*x^12 + 840*x^14 + 3586*x^16 + 15708*x^18 + 70196*x^20 +...
which equals x + A(x^2).
Series_Reversion( x - A(x^2) ) = x + x^2 + 2*x^3 + 7*x^4 + 26*x^5 + 102*x^6 + 420*x^7 + 1793*x^8 + 7854*x^9 + 35098*x^10 +...
which equals (A(x) + x)/2.
A( (x + A(x))^2/4 ) = x^2 + 2*x^3 + 7*x^4 + 26*x^5 + 102*x^6 + 420*x^7 + 1793*x^8 + 7854*x^9 + 35098*x^10 +...
which equals (A(x) - x)/2.
(x + A(x))^2/4 = x^2 + 2*x^3 + 5*x^4 + 18*x^5 + 70*x^6 + 284*x^7 + 1197*x^8 + 5198*x^9 + 23078*x^10 +...
which equals x*A(x) + A( (x + A(x))^2/4 )^2.
Let B(B(x)) = A(x) then B(x) is an integer series (verified up to 400 terms):
B(x) = x + x^2 + x^3 + 4*x^4 + 10*x^5 + 33*x^6 + 105*x^7 + 360*x^8 + 1244*x^9 + 4350*x^10 + 15488*x^11 + 55514*x^12 + 201220*x^13 + 735409*x^14 + 2707973*x^15 + 10036908*x^16 + 37413444*x^17 + 140192022*x^18 + 527728468*x^19 + 1994613008*x^20 + 7566519020*x^21 + 28803657194*x^22 + 110000675444*x^23 + 421172979138*x^24 + 1616154840122*x^25 + 6220675694876*x^26 + 24028744940126*x^27 + 92796758654138*x^28 + 357109198506472*x^29 + 1389208125591993*x^30 + 5552344056227841*x^31 + 21323110914365336*x^32 + 70454013218649400*x^33 + 298345385254918858*x^34 + 2355991303858543108*x^35 + 6997638978589417444*x^36 - 100308304079135213248*x^37 - 153429582192527911554*x^38 + 14890888637965051478428*x^39 + 29224269440712871606248*x^40 +...
where B(x - A(x^2)) is an odd function that begins
B(x - A(x^2)) = x - x^3 - 7*x^5 - 37*x^7 - 189*x^9 - 583*x^11 + 1255*x^13 + 28711*x^15 + 218937*x^17 + 890823*x^19 + 760249*x^21 - 69490111*x^23 + 649102437*x^25 - 54674874881*x^27 + 3035063408777*x^29 - 209576545439765*x^31 + 16859178743641679*x^33 - 1563274578274583407*x^35 + 165493803731758762623*x^37 - 19828488694059640880745*x^39 +...
also B(-B(-x)) = x.
-
{a(n) = my(A=x); for(i=1,n, A = -x + 2*serreverse(x - subst(A,x,x^2) +x^2*O(x^n)) ); polcoeff(A,n)}
for(n=1,30,print1(a(n),", "))
A271844
G.f. A(x) satisfies: A(x) = x + A( A(x)^2 + A(x)^4 ).
Original entry on oeis.org
1, 1, 2, 7, 26, 102, 420, 1793, 7854, 35106, 159492, 734334, 3418892, 16068532, 76135112, 363283763, 1744135306, 8419281306, 40838500796, 198950342814, 972999755364, 4775441138580, 23513016382120, 116111875760294, 574927064750460, 2853800953323468, 14197997592237912, 70786396399962476, 353611516341840008, 1769694222850151128
Offset: 1
G.f.: A(x) = x + x^2 + 2*x^3 + 7*x^4 + 26*x^5 + 102*x^6 + 420*x^7 + 1793*x^8 + 7854*x^9 + 35106*x^10 + 159492*x^11 + 734334*x^12 +...
where A(x) = x + A( A(x)^2 + A(x)^4 ).
RELATED SERIES.
A(x)^2 + A(x)^4 = x^2 + 2*x^3 + 6*x^4 + 22*x^5 + 84*x^6 + 340*x^7 + 1434*x^8 + 6226*x^9 + 27632*x^10 + 124820*x^11 + 572000*x^12 +...
A(x^2 + x^4) = x^2 + 2*x^4 + 4*x^6 + 14*x^8 + 60*x^10 + 276*x^12 + 1320*x^14 + 6530*x^16 + 33188*x^18 + 172252*x^20 + 909016*x^22 +...
where the series reversion of A(x) equals x - A(x^2 + x^4).
-
{a(n) = my(A=x+x^2 +x*O(x^n)); for(i=1,n, A = x + subst(A,x,A^2 + A^4) ) ; polcoeff(A,n)}
for(n=1,30,print1(a(n),", "))
A272460
G.f. A(x) satisfies: A( x - A(x^3)/x ) = x.
Original entry on oeis.org
1, 1, 2, 5, 15, 49, 168, 596, 2170, 8063, 30451, 116545, 451038, 1762065, 6939684, 27523374, 109832228, 440668881, 1776599145, 7193526536, 29240389629, 119276102017, 488106369196, 2003299984825, 8244088853598, 34010402405020, 140627814353509, 582704045483909, 2419228983607503, 10062353339406026, 41924039720446064, 174952464642171681, 731184941189099208, 3060168941260579386
Offset: 1
G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 15*x^5 + 49*x^6 + 168*x^7 + 596*x^8 + 2170*x^9 + 8063*x^10 + 30451*x^11 + 116545*x^12 +...
where A( x - A(x^3)/x ) = x.
RELATED SERIES.
Let B(x) be the series reversion of g.f. A(x), A(B(x)) = x, then
B(x) = x - x^2 - x^5 - 2*x^8 - 5*x^11 - 15*x^14 - 49*x^17 - 168*x^20 - 596*x^23 - 2170*x^26 - 8063*x^29 - 30451*x^32 - 116545*x^35 +...
such that B(x) = x - A(x^3)/x.
-
{a(n) = my(A=x); for(i=1,n, A = serreverse( x - subst(A,x,x^3 +x^3*O(x^n))/x )); polcoeff(A,n)}
for(n=1,50,print1(a(n),", "))
A272461
G.f. A(x) satisfies: A( x - A(x^4)/x^2 ) = x.
Original entry on oeis.org
1, 1, 2, 5, 14, 43, 140, 474, 1650, 5865, 21194, 77623, 287492, 1074915, 4051824, 15381073, 58749102, 225621404, 870686810, 3374625925, 13130575110, 51271434788, 200845390668, 789081913225, 3108496250028, 12275905239752, 48590260462470, 192736593501813, 766007363990640, 3049978926971396, 12164745517874576, 48596364360237882, 194426663474794450, 778968350863994065
Offset: 1
G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 43*x^6 + 140*x^7 + 474*x^8 + 1650*x^9 + 5865*x^10 + 21194*x^11 + 77623*x^12 +...
where A( x - A(x^4)/x^2 ) = x.
RELATED SERIES.
Let B(x) be the series reversion of the g.f. A(x) so that A(B(x)) = x, then
B(x) = x - x^2 - x^6 - 2*x^10 - 5*x^14 - 14*x^18 - 43*x^22 - 140*x^26 - 474*x^30 - 1650*x^34 - 5865*x^38 - 21194*x^42 - 77623*x^46 +...
such that B(x) = x - A(x^4)/x^2.
-
{a(n) = my(A=x); for(i=1,n, A = serreverse( x - subst(A,x,x^4 +x^3*O(x^n))/x^2 )); polcoeff(A,n)}
for(n=1,50,print1(a(n),", "))
A295761
G.f. A(x) satisfies: A(x - A(x^2)) = x + 2*A(x^2).
Original entry on oeis.org
1, 3, 6, 24, 96, 396, 1728, 7839, 36438, 172680, 831624, 4058202, 20021268, 99697188, 500429016, 2529375300, 12862429920, 65760468840, 337817930184, 1742850773154, 9026374329108, 46912014922392, 244588357460448, 1278937818954306, 6705339839722404, 35241796466506908, 185643541655678184, 979972436105339856, 5183169679909147200, 27464173024052341200
Offset: 1
G.f.: A(x) = x + 3*x^2 + 6*x^3 + 24*x^4 + 96*x^5 + 396*x^6 + 1728*x^7 + 7839*x^8 + 36438*x^9 + 172680*x^10 + 831624*x^11 + 4058202*x^12 +...
such that A(x - A(x^2)) = x + 2*A(x^2).
RELATED SERIES.
A(x - A(x^2)) = x + 2*x^2 + 6*x^4 + 12*x^6 + 48*x^8 + 192*x^10 + 792*x^12 + 3456*x^14 + 15678*x^16 + 72876*x^18 + 345360*x^20 + 1663248*x^22 + 8116404*x^24 + 40042536*x^26 + 199394376*x^28 + 1000858032*x^30 + 5058750600*x^32 +...
which equals x + 2*A(x^2).
Series_Reversion( x - A(x^2) ) = x + x^2 + 2*x^3 + 8*x^4 + 32*x^5 + 132*x^6 + 576*x^7 + 2613*x^8 + 12146*x^9 + 57560*x^10 + 277208*x^11 + 1352734*x^12 +...
which equals (A(x) + 2*x)/3.
A( (2*x + A(x))^2/9 ) = x^2 + 2*x^3 + 8*x^4 + 32*x^5 + 132*x^6 + 576*x^7 + 2613*x^8 + 12146*x^9 + 57560*x^10 + 277208*x^11 + 1352734*x^12 +...
which equals (A(x) - x)/3.
-
{a(n) = my(A=x); for(i=1,n, A = -2*x + 3*serreverse(x - subst(A,x,x^2) +x^2*O(x^n)) ); polcoeff(A,n)}
for(n=1,30,print1(a(n),", "))
Showing 1-10 of 13 results.
Comments