A275755
G.f. satisfies: A(x) = x + A( A(x)^2 - A(x)^5 ).
Original entry on oeis.org
1, 1, 2, 6, 19, 65, 234, 873, 3346, 13099, 52154, 210541, 859768, 3545263, 14741148, 61736903, 260192880, 1102704585, 4696416190, 20090502706, 86285786519, 371917832707, 1608317086940, 6975728777332, 30338392601498, 132277349730004, 578075052215714, 2531710609461484, 11109852467209553, 48843541287179595, 215108137824940916, 948874606956945665, 4191979050580762418, 18545890698661636784, 82159569800859439840, 364432560308538162214, 1618431087549954575022
Offset: 1
G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 19*x^5 + 65*x^6 + 234*x^7 + 873*x^8 + 3346*x^9 + 13099*x^10 + 52154*x^11 + 210541*x^12 + 859768*x^13 + 3545263*x^14 +...
such that A(x) = x + A( A(x)^2 - A(x)^5 ).
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 5*x^4 + 16*x^5 + 54*x^6 + 192*x^7 + 710*x^8 + 2702*x^9 + 10515*x^10 + 41660*x^11 + 167483*x^12 + 681532*x^13 + 2801816*x^14 +...
A(x)^5 = x^5 + 5*x^6 + 20*x^7 + 80*x^8 + 320*x^9 + 1286*x^10 + 5210*x^11 + 21285*x^12 + 87655*x^13 + 363660*x^14 + 1518952*x^15 +...
A(x^2 - x^5) = x^2 + x^4 - x^5 + 2*x^6 - 2*x^7 + 6*x^8 - 6*x^9 + 20*x^10 - 24*x^11 + 71*x^12 - 95*x^13 + 270*x^14 - 392*x^15 + 1063*x^16 - 1662*x^17 +...
where Series_Reversion(A(x)) = x - A(x^2 - x^5).
-
{a(n) = my(A=x); for(i=1,n, A = x + subst(A,x, A^2 - A^5 +x*O(x^n))); polcoeff(A,n)}
for(n=1,40,print1(a(n),", "))
A275757
G.f. satisfies: A(x) = x + A( A(x)^3 - A(x)^7 ), an odd function.
Original entry on oeis.org
1, 1, 3, 11, 46, 207, 977, 4767, 23835, 121424, 627747, 3284055, 17348254, 92387544, 495371637, 2671588333, 14480158111, 78822638280, 430685654483, 2361012092488, 12980509646385, 71547277918984, 395252428706918, 2187886348193235, 12132382884810469, 67383306100049693, 374771558921409855, 2086989709106321626, 11634599273439782284, 64923785744439199536, 362598744217074249165, 2026617482659866472677
Offset: 1
G.f.: A(x) = x + x^3 + 3*x^5 + 11*x^7 + 46*x^9 + 207*x^11 + 977*x^13 + 4767*x^15 + 23835*x^17 + 121424*x^19 + 627747*x^21 + 3284055*x^23 + 17348254*x^25 +...
such that A(x) = x + A( A(x)^3 - A(x)^7 ).
RELATED SERIES.
A(x)^3 = x^3 + 3*x^5 + 12*x^7 + 52*x^9 + 240*x^11 + 1155*x^13 + 5727*x^15 + 29034*x^17 + 149727*x^19 + 782627*x^21 + 4135668*x^23 + 22051158*x^25 +...
A(x)^7 = x^7 + 7*x^9 + 42*x^11 + 238*x^13 + 1323*x^15 + 7308*x^17 + 40327*x^19 + 222804*x^21 + 1233624*x^23 + 6847281*x^25 + 38102099*x^27 +...
A(x^3 - x^7) = x^3 - x^7 + x^9 - 3*x^13 + 3*x^15 + 3*x^17 - 15*x^19 + 10*x^21 + 30*x^23 - 77*x^25 + 16*x^27 + 231*x^29 - 399*x^31 - 178*x^33 + 1653*x^35 - 1892*x^37 - 2887*x^39 +...
where Series_Reversion(A(x)) = x - A(x^3 - x^7).
-
{a(n) = my(A=x); for(i=1, 2*n, A = x + subst(A, x, A^3 - A^7 +x*O(x^(2*n)))); polcoeff(A, 2*n-1)}
for(n=1, 30, print1(a(n), ", "))
A275758
G.f. satisfies: A(x) = x + A( A(x)^4 - A(x)^10 ).
Original entry on oeis.org
1, 1, 4, 21, 126, 817, 5574, 39418, 286286, 2122491, 15995696, 122166551, 943430560, 7353998931, 57783603764, 457176705018, 3639000808140, 29119701312548, 234120338807316, 1890257713736568, 15319612051101438, 124583720191974904, 1016307862050772614, 8314217332992596050, 68193993494598345010, 560671685990956975367, 4619857060146629819160, 38144728242794104501561, 315546193363448088862064, 2614910268303053285326541
Offset: 1
G.f.: A(x) = x + x^4 + 4*x^7 + 21*x^10 + 126*x^13 + 817*x^16 + 5574*x^19 + 39418*x^22 + 286286*x^25 + 2122491*x^28 + 15995696*x^31 + 122166551*x^34 +...
such that A(x) = x + A( A(x)^4 - A(x)^10 ).
RELATED SERIES.
A(x)^4 = x^4 + 4*x^7 + 22*x^10 + 136*x^13 + 901*x^16 + 6248*x^19 + 44758*x^22 + 328520*x^25 + 2457286*x^28 + 18659736*x^31 + 143455026*x^34 +...
A(x)^10 = x^10 + 10*x^13 + 85*x^16 + 690*x^19 + 5520*x^22 + 44002*x^25 + 351045*x^28 + 2808040*x^31 + 22537355*x^34 + 181530280*x^37 + 1467320874*x^40 +...
A(x^4 - x^10) = x^4 - x^10 + x^16 - 4*x^22 + 10*x^28 - 32*x^34 + 106*x^40 - 350*x^46 + 1211*x^52 - 4242*x^58 + 15083*x^64 - 54404*x^70 + 198114*x^76 +...
where Series_Reversion(A(x)) = x - A(x^4 - x^10).
-
{a(n) = my(A=x); for(i=1, 3*n, A = x + subst(A, x, A^4 - A^10 +x*O(x^(3*n)))); polcoeff(A, 3*n-2)}
for(n=1, 30, print1(a(n), ", "))
Showing 1-3 of 3 results.
Comments