A275755
G.f. satisfies: A(x) = x + A( A(x)^2 - A(x)^5 ).
Original entry on oeis.org
1, 1, 2, 6, 19, 65, 234, 873, 3346, 13099, 52154, 210541, 859768, 3545263, 14741148, 61736903, 260192880, 1102704585, 4696416190, 20090502706, 86285786519, 371917832707, 1608317086940, 6975728777332, 30338392601498, 132277349730004, 578075052215714, 2531710609461484, 11109852467209553, 48843541287179595, 215108137824940916, 948874606956945665, 4191979050580762418, 18545890698661636784, 82159569800859439840, 364432560308538162214, 1618431087549954575022
Offset: 1
G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 19*x^5 + 65*x^6 + 234*x^7 + 873*x^8 + 3346*x^9 + 13099*x^10 + 52154*x^11 + 210541*x^12 + 859768*x^13 + 3545263*x^14 +...
such that A(x) = x + A( A(x)^2 - A(x)^5 ).
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 5*x^4 + 16*x^5 + 54*x^6 + 192*x^7 + 710*x^8 + 2702*x^9 + 10515*x^10 + 41660*x^11 + 167483*x^12 + 681532*x^13 + 2801816*x^14 +...
A(x)^5 = x^5 + 5*x^6 + 20*x^7 + 80*x^8 + 320*x^9 + 1286*x^10 + 5210*x^11 + 21285*x^12 + 87655*x^13 + 363660*x^14 + 1518952*x^15 +...
A(x^2 - x^5) = x^2 + x^4 - x^5 + 2*x^6 - 2*x^7 + 6*x^8 - 6*x^9 + 20*x^10 - 24*x^11 + 71*x^12 - 95*x^13 + 270*x^14 - 392*x^15 + 1063*x^16 - 1662*x^17 +...
where Series_Reversion(A(x)) = x - A(x^2 - x^5).
-
{a(n) = my(A=x); for(i=1,n, A = x + subst(A,x, A^2 - A^5 +x*O(x^n))); polcoeff(A,n)}
for(n=1,40,print1(a(n),", "))
A275756
G.f. satisfies: A(x) = x + A( A(x)^2 - A(x)^6 ).
Original entry on oeis.org
1, 1, 2, 6, 20, 71, 264, 1018, 4032, 16305, 67042, 279444, 1178088, 5014596, 21521488, 93027025, 404630318, 1769704106, 7778030834, 34335337802, 152168657438, 676796514510, 3019945599904, 13515300673984, 60649985907334, 272847379282493, 1230295797205452, 5559373120441048, 25171114275512520, 114177375142080814, 518806321789317040, 2361183952087172306, 10762422470020855820, 49125407360603361370, 224533932290057629076, 1027553322543206612019, 4708070541211739962738, 21595828228486254332762
Offset: 1
G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 20*x^5 + 71*x^6 + 264*x^7 + 1018*x^8 + 4032*x^9 + 16305*x^10 + 67042*x^11 + 279444*x^12 + 1178088*x^13 + 5014596*x^14 +...
such that A(x) = x + A( A(x)^2 - A(x)^6 ).
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 5*x^4 + 16*x^5 + 56*x^6 + 206*x^7 + 786*x^8 + 3088*x^9 + 12408*x^10 + 50754*x^11 + 210639*x^12 + 884784*x^13 + 3754424*x^14 +...
A(x)^6 = x^6 + 6*x^7 + 27*x^8 + 116*x^9 + 495*x^10 + 2112*x^11 + 9035*x^12 + 38820*x^13 + 167628*x^14 + 727480*x^15 + 3172455*x^16 +...
A(x^2 - x^6) = x^2 + x^4 + x^6 + 4*x^8 + 14*x^10 + 48*x^12 + 170*x^14 + 628*x^16 + 2382*x^18 + 9202*x^20 + 36098*x^22 + 143484*x^24 + 576638*x^26 + 2339050*x^28 +...
where Series_Reversion(A(x)) = x - A(x^2 - x^6).
-
{a(n) = my(A=x); for(i=1,n, A = x + subst(A,x, A^2 - A^6 +x*O(x^n))); polcoeff(A,n)}
for(n=1,40,print1(a(n),", "))
A275757
G.f. satisfies: A(x) = x + A( A(x)^3 - A(x)^7 ), an odd function.
Original entry on oeis.org
1, 1, 3, 11, 46, 207, 977, 4767, 23835, 121424, 627747, 3284055, 17348254, 92387544, 495371637, 2671588333, 14480158111, 78822638280, 430685654483, 2361012092488, 12980509646385, 71547277918984, 395252428706918, 2187886348193235, 12132382884810469, 67383306100049693, 374771558921409855, 2086989709106321626, 11634599273439782284, 64923785744439199536, 362598744217074249165, 2026617482659866472677
Offset: 1
G.f.: A(x) = x + x^3 + 3*x^5 + 11*x^7 + 46*x^9 + 207*x^11 + 977*x^13 + 4767*x^15 + 23835*x^17 + 121424*x^19 + 627747*x^21 + 3284055*x^23 + 17348254*x^25 +...
such that A(x) = x + A( A(x)^3 - A(x)^7 ).
RELATED SERIES.
A(x)^3 = x^3 + 3*x^5 + 12*x^7 + 52*x^9 + 240*x^11 + 1155*x^13 + 5727*x^15 + 29034*x^17 + 149727*x^19 + 782627*x^21 + 4135668*x^23 + 22051158*x^25 +...
A(x)^7 = x^7 + 7*x^9 + 42*x^11 + 238*x^13 + 1323*x^15 + 7308*x^17 + 40327*x^19 + 222804*x^21 + 1233624*x^23 + 6847281*x^25 + 38102099*x^27 +...
A(x^3 - x^7) = x^3 - x^7 + x^9 - 3*x^13 + 3*x^15 + 3*x^17 - 15*x^19 + 10*x^21 + 30*x^23 - 77*x^25 + 16*x^27 + 231*x^29 - 399*x^31 - 178*x^33 + 1653*x^35 - 1892*x^37 - 2887*x^39 +...
where Series_Reversion(A(x)) = x - A(x^3 - x^7).
-
{a(n) = my(A=x); for(i=1, 2*n, A = x + subst(A, x, A^3 - A^7 +x*O(x^(2*n)))); polcoeff(A, 2*n-1)}
for(n=1, 30, print1(a(n), ", "))
Showing 1-3 of 3 results.
Comments