A181416
Irregular table T(n,k) = n*A178883(n,k) read by rows.
Original entry on oeis.org
1, 2, 4, 6, 12, 18, 24, 32, 16, 72, 96, 120, 120, 120, 180, 180, 480, 600, 720, 576, 576, 288, 648, 1296, 216, 1152, 1728, 3600, 4320, 5040, 3360, 3360, 3360, 3024, 6048, 3024, 3024, 4032, 12096, 4032, 8400, 16800, 30240, 35280, 40320
Offset: 1
In row n=3 the products are (3,3,3) times (2,4,6) yielding (6,12,18) which adds to 36, the third Lah number.
The table starts in row n=1 with row lengths A000041(n) as:
1;
2,4;
6,12,18;
24,32,16,72,96;
120,120,120,180,180,480,600;
A162608
Triangle read by rows in which row n lists n+1 terms, starting with n!, such that the difference between successive terms is also equal to n!.
Original entry on oeis.org
1, 1, 2, 2, 4, 6, 6, 12, 18, 24, 24, 48, 72, 96, 120, 120, 240, 360, 480, 600, 720, 720, 1440, 2160, 2880, 3600, 4320, 5040, 5040, 10080, 15120, 20160, 25200, 30240, 35280, 40320, 40320, 80640, 120960, 161280, 201600, 241920, 282240, 322560, 362880
Offset: 0
Triangle begins:
1;
1, 2;
2, 4, 6;
6, 12, 18, 24;
24, 48, 72, 96, 120;
120, 240, 360, 480, 600, 720;
720, 1440, 2160, 2880, 3600, 4320, 5040;
5040, 10080, 15120, 20160, 25200, 30240, 35280, 40320;
40320, 80640, 120960, 161280, 201600, 241920, 282240, 322560, 362880;
362880,725760,1088640,1451520,1814400,2177280,2540160,2903040,3265920,3628800;
...
Observation: It appears that rows sums = A001710(n+2).
-
a162608 n k = a162608_tabl !! n !! k
a162608_row n = a162608_tabl !! n
a162608_tabl = map fst $ iterate f ([1], 1) where
f (row, n) = (row' ++ [head row' + last row'], n + 1) where
row' = map (* n) row
-- Reinhard Zumkeller, Mar 09 2012
-
/* As triangle */ [[Factorial(n)*k: k in [1..n+1]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 04 2015
-
Table[k n!, {n, 0, 8}, {k, n + 1}] // Flatten (* Michael De Vlieger, Jul 03 2015 *)
Showing 1-2 of 2 results.
Comments