A178921 Product of distances between successive distinct prime divisors of n; zero if n has only 1 distinct prime factor.
0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 5, 2, 0, 0, 1, 0, 3, 4, 9, 0, 1, 0, 11, 0, 5, 0, 2, 0, 0, 8, 15, 2, 1, 0, 17, 10, 3, 0, 4, 0, 9, 2, 21, 0, 1, 0, 3, 14, 11, 0, 1, 6, 5, 16, 27, 0, 2, 0, 29, 4, 0, 8, 8, 0, 15, 20, 6, 0, 1, 0, 35, 2, 17, 4, 10, 0, 3, 0, 39, 0, 4, 12, 41, 26, 9, 0, 2, 6, 21, 28, 45, 14, 1, 0, 5, 8, 3, 0, 14, 0, 11
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
f[n_] := Module[{ps}, If[n <= 1, 0, ps = Transpose[FactorInteger[n]][[1]]; Times @@ Differences[ps]]]; Table[f[n], {n, 100}] (* T. D. Noe, Aug 20 2012 *) Array[Apply[Times, Differences@ FactorInteger[#][[All, 1]] /. {} -> 0] &, 105] (* Michael De Vlieger, Sep 10 2018 *)
-
PARI
A178921(n) = if(1>=omega(n), 0, my(ps = factor(n)[,1], m = 1); for(i=2, #ps, m *= (ps[i]-ps[i-1])); (m)); \\ Antti Karttunen, Sep 07 2018
-
Python
from sympy import primerange primes = list(primerange(2,500)) for n in range(1,100): d = n prev = 0 product = 1 for p in primes: if d%p==0: if prev: product *= p-prev while d%p==0: d//=p if d==1: break prev = p if prev==0: product = 0 print(product, end=',')
Extensions
More terms from Antti Karttunen, Sep 07 2018
Comments