A178960 Numbers n such that n! contains every digit at least once.
23, 27, 31, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101
Offset: 1
Examples
23 is in the sequence because 23! = 25852016738884976640000 contains every digit at least once.
Programs
-
Magma
[n: n in [0..101] | Seqset(Intseq(Factorial(n))) eq {0..9}]; // Bruno Berselli, May 17 2011
-
Maple
with(numtheory):Digits:=200:B:={0,1,2,3,4,5,6,7,8,9}: T:=array(1..250) : for p from 1 to 200 do:ind:=0:n:=p!:l:=length(n):n0:=n:s:=0:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v : T[m]:=u:od: A:=convert(T,set):z:=nops(A):if A intersect B = B and ind=0 then ind:=1: printf(`%d, `,p):else fi:od:
-
Mathematica
Select[Range[101], Length[Union[IntegerDigits[#!]]] == 10 &]