A178963 E.g.f.: (3+2*sqrt(3)*exp(x/2)*sin(sqrt(3)*x/2))/(exp(-x)+2*exp(x/2)*cos(sqrt(3)*x/2)).
1, 1, 1, 1, 3, 9, 19, 99, 477, 1513, 11259, 74601, 315523, 3052323, 25740261, 136085041, 1620265923, 16591655817, 105261234643, 1488257158851, 17929265150637, 132705221399353, 2172534146099019, 30098784753112329, 254604707462013571, 4736552519729393091, 74180579084559895221, 705927677520644167681, 14708695606607601165843, 256937013876000351610089, 2716778010767155313771539
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- J. M. Luck, On the frequencies of patterns of rises and falls, arXiv preprint arXiv:1309.7764 [cond-mat.stat-mech], 2013-2014.
- Peter Luschny, An old operation on sequences: the Seidel transform.
- Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
Crossrefs
Programs
-
Maple
A178963_list := proc(dim) local E,DIM,n,k; DIM := dim-1; E := array(0..DIM, 0..DIM); E[0,0] := 1; for n from 1 to DIM do if n mod 3 = 0 then E[n,0] := 0 ; for k from n-1 by -1 to 0 do E[k,n-k] := E[k+1,n-k-1] + E[k,n-k-1] od; else E[0,n] := 0; for k from 1 by 1 to n do E[k,n-k] := E[k-1,n-k+1] + E[k-1,n-k] od; fi od; [E[0,0],seq(E[k,0]+E[0,k],k=1..DIM)] end: A178963_list(30); # Peter Luschny, Apr 02 2012 # Alternatively, using a bivariate exponential generating function: A178963 := proc(n) local g, p, q; g := (x,z) -> 3*exp(x*z)/(exp(z)+2*exp(-z/2)*cos(z*sqrt(3)/2)); p := (n,x) -> n!*coeff(series(g(x,z),z,n+2),z,n); q := (n,m) -> if modp(n,m) = 0 then 0 else 1 fi: (-1)^floor(n/3)*p(n,q(n,3)) end: seq(A178963(i),i=0..30); # Peter Luschny, Jun 06 2012 # third Maple program: b:= proc(u, o, t) option remember; `if`(u+o=0, 1, `if`(t=0, add(b(u-j, o+j-1, irem(t+1, 3)), j=1..u), add(b(u+j-1, o-j, irem(t+1, 3)), j=1..o))) end: a:= n-> b(n, 0, 0): seq(a(n), n=0..35); # Alois P. Heinz, Oct 29 2014
-
Mathematica
max = 30; f[x_] := (E^x*(2*Sqrt[3]*E^(x/2)*Sin[(Sqrt[3]*x)/2] + 3))/(2*E^((3*x)/2)*Cos[(Sqrt[3]*x)/2] + 1); CoefficientList[Series[f[x], {x, 0, max}], x]*Range[0, max]! // Simplify (* Jean-François Alcover, Sep 16 2013 *)
-
Sage
# uses[A from A181936] A178963 = lambda n: (-1)^int(is_odd(n//3))*A(3,n) print([A178963(n) for n in (0..30)]) # Peter Luschny, Jan 24 2017
Formula
a(3*n) = A002115(n). - Peter Luschny, Aug 02 2012
Comments