A181937
André numbers. Square array A(n,k), n>=2, k>=0, read by antidiagonals upwards, A(n,k) = n-alternating permutations of length k.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 3, 16, 1, 1, 1, 1, 1, 9, 61, 1, 1, 1, 1, 1, 4, 19, 272, 1, 1, 1, 1, 1, 1, 14, 99, 1385, 1, 1, 1, 1, 1, 1, 5, 34, 477, 7936, 1, 1, 1, 1, 1, 1, 1, 20, 69, 1513, 50521, 1, 1, 1, 1, 1, 1, 1, 6, 55, 496, 11259, 353792
Offset: 0
n\k [0][1][2][3][4] [5] [6] [7] [8] [9] [10] [11]
[1] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 [A000012]
[2] 1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792 [A000111]
[3] 1, 1, 1, 1, 3, 9, 19, 99, 477, 1513, 11259, 74601 [A178963]
[4] 1, 1, 1, 1, 1, 4, 14, 34, 69, 496, 2896, 11056 [A178964]
[5] 1, 1, 1, 1, 1, 1, 5, 20, 55, 125, 251, 2300 [A181936]
[6] 1, 1, 1, 1, 1, 1, 1, 6, 27, 83, 209, 461 [A250283]
- Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page.
- Alois P. Heinz, Antidiagonals k = 0..140, flattened
- Désiré André, Développement de séc x et de tang x, C. R. Math. Acad. Sci. Paris 88 (1879), 965-967.
- Désiré André, Sur les permutations alternées, J. Math. pur. appl., 7 (1881), 167-184.
- Peter Luschny, An old operation on sequences: the Seidel transform.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
-
# Signed version.
using Memoize
@memoize function André(m, n)
n ≤ 0 && return 1
r = range(0, stop=n-1, step=m)
S = sum(binomial(n, k) * André(m, k) for k in r)
n % m == 0 ? -S : S
end
for m in 1:8 println([André(m, n) for n in 0:11]) end # Peter Luschny, Feb 09 2019
-
A181937_list := proc(n, len) local E,dim,i,k; # Seidel's boustrophedon transform
dim := len-1; E := array(0..dim, 0..dim); E[0,0] := 1;
for i from 1 to dim do
if i mod n = 0 then E[i,0] := 0 ;
for k from i-1 by -1 to 0 do E[k,i-k] := E[k+1,i-k-1] + E[k,i-k-1] od;
else E[0,i] := 0;
for k from 1 by 1 to i do E[k,i-k] := E[k-1,i-k+1] + E[k-1,i-k] od;
fi od; [E[0,0],seq(E[k,0]+E[0,k],k=1..dim)] end:
for n from 2 to 6 do print(A181937_list(n,12)) od;
# Alternative, with an additional row 0:
Andre := proc(m, n) option remember; local k; ifelse(n <= 0, 1, ifelse(m = 0, 1,
-add(binomial(n, k) * Andre(m, k), k = 0..n-1, m))) end:
T := (n, k) -> abs(Andre(n, k)): seq(lprint(seq(T(n, k), k = 0..11)), n = 0..9);
# Peter Luschny, Aug 19 2024
-
dim = 13; e[][0, 0] = 1; e[m][n_ /; 0 <= n <= dim, 0] /; Mod[n, m] == 0 = 0; e[m_][k_ /; 0 <= k <= dim, n_ /; 0 <= n <= dim] /; Mod[n+k, m] == 0 := e[m][k, n] = e[m][k, n-1] + e[m][k+1, n-1]; e[m_][0, n_ /; 0 <= n <= dim] /; Mod[n, m] == 0 = 0; e[m_][k_ /; 0 <= k <= dim, n_ /; 0 <= n <= dim] /; Mod[n+k, m] != 0 := e[m][k, n] = e[m][k-1, n] + e[m][k-1, n+1]; e[][, ] = 0; a[, 0] = 1; a[m_, n_] := e[m][n, 0] + e[m][0, n]; Table[a[m-n+1, n], {m, 1, dim-1}, {n, 0, m-1}] // Flatten (* Jean-François Alcover, Jul 23 2013, after Maple *)
b[r_, u_, o_, t_] := b[r, u, o, t] = If[u + o == 0, 1, If[t == 0, Sum[b[r, u - j, o + j - 1, Mod[t + 1, r]], {j, 1, u}], Sum[b[r, u + j - 1, o - j, Mod[t + 1, r]], {j, 1, o}]]]; A[n_, k_] := b[n, k, 0, 0];
Table[A[n - k, k], {n, 2, 13}, {k, 0, n - 2}] // Flatten
(* Jean-François Alcover, Nov 22 2023, after Alois P. Heinz in A250283 *)
Andre[n_, k_] := Andre[n, k] = If[k <= 0, 1, If[n == 0, 1, -Sum[Binomial[k, j] Andre[n, j], {j, 0, k-1, n}]]];
Table[Abs[Andre[n, k]], {n, 0, 6}, {k, 0, 11}] // MatrixForm
(* Peter Luschny, Aug 19 2024 *)
-
@cached_function
def A(m, n):
if n == 0: return 1
s = -1 if m.divides(n) else 1
t = [m*k for k in (0..(n-1)//m)]
return s*add(binomial(n, k)*A(m, k) for k in t)
A181937_row = lambda m, n: (-1)^int(is_odd(n//m))*A(m, n)
for n in (1..6): print([A181937_row(n, k) for k in (0..20)]) # Peter Luschny, Feb 06 2017
A002115
Generalized Euler numbers.
Original entry on oeis.org
1, 1, 19, 1513, 315523, 136085041, 105261234643, 132705221399353, 254604707462013571, 705927677520644167681, 2716778010767155313771539, 14050650308943101316593590153, 95096065132610734223282520762883, 823813936407337360148622860507620561
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..166
- Takao Komatsu and Ram Krishna Pandey, On hypergeometric Cauchy numbers of higher grade, AIMS Mathematics (2021) Vol. 6, Issue 7, 6630-6646.
- Takao Komatsu and Guo-Dong Liu, Congruence properties of Lehmer-Euler numbers, arXiv:2501.01178 [math.NT], 2025.
- D. H. Lehmer, Lacunary recurrence formulas for the numbers of Bernoulli and Euler, Annals Math., 36 (1935), 637-649.
- Bruce E. Sagan, Generalized Euler numbers and ordered set partitions, arXiv:2501.07692 [math.NT], 2025. See p. 3.
-
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, `if`(t=0,
add(b(u-j, o+j-1, irem(t+1, 3)), j=1..u),
add(b(u+j-1, o-j, irem(t+1, 3)), j=1..o)))
end:
a:= n-> b(3*n, 0$2):
seq(a(n), n=0..17); # Alois P. Heinz, Aug 12 2019
# Alternative:
h := 1 / hypergeom([], [1/3, 2/3], (-x/3)^3): ser := series(h, x, 40):
seq((3*n)! * coeff(ser, x, 3*n), n = 0..13); # Peter Luschny, Mar 13 2023
-
max = 12; f[x_] := 1/(1/3*Exp[-x^(1/3)] + 2/3*Exp[1/2*x^(1/3)]*Cos[1/2*3^(1/2)* x^(1/3)]); CoefficientList[Series[f[x], {x, 0, max}], x]*(3 Range[0, max])! (* Jean-François Alcover, Sep 16 2013, after Vladeta Jovovic *)
A215064
Triangle read by rows, e.g.f. exp(x*z)*((exp(x/2)+exp(x*3/2))/((exp(3*x/2)+ 2*cos(sqrt(3)*x/2))/3)-1).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, -1, 3, 3, 1, -3, -4, 6, 4, 1, -9, -15, -10, 10, 5, 1, 19, -54, -45, -20, 15, 6, 1, 99, 133, -189, -105, -35, 21, 7, 1, 477, 792, 532, -504, -210, -56, 28, 8, 1, -1513, 4293, 3564, 1596, -1134, -378, -84, 36, 9, 1, -11259
Offset: 0
[0] [1]
[1] [1, 1]
[2] [1, 2, 1]
[3] [-1, 3, 3, 1]
[4] [-3, -4, 6, 4, 1]
[5] [-9, -15, -10, 10, 5, 1]
[6] [19, -54, -45, -20, 15, 6, 1]
[7] [99, 133, -189, -105, -35, 21, 7, 1]
[8] [477, 792, 532, -504, -210, -56, 28, 8, 1]
[9] [-1513, 4293, 3564, 1596, -1134, -378, -84, 36, 9, 1]
-
max = 11; f = Exp[x*z]*((Exp[x/2] + Exp[x*(3/2)])/((Exp[3*(x/2)] + 2*Cos[Sqrt[3]*(x/2)])/3) - 1); coes = CoefficientList[ Series[f, {x, 0, max}, {z, 0, max}], {x, z}]; Table[ coes[[n, k]]*(n - 1)!, {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)
-
# uses[triangle from A215060]
def A215064_triangle(dim):
var('x, z')
f = exp(x*z)*((exp(x/2)+exp(x*3/2))/((exp(3*x/2)+2*cos(sqrt(3)*x/2))/3)-1)
return triangle(f, dim)
A215064_triangle(12)
A249402
The number of 3-alternating permutations of [n].
Original entry on oeis.org
1, 1, 1, 2, 3, 11, 40, 99, 589, 3194, 11259, 92159, 666160, 3052323, 31799041, 287316122, 1620265923, 20497038755, 222237912664, 1488257158851, 22149498351205, 280180369563194, 2172534146099019, 37183508549366519, 537546603651987424, 4736552519729393091
Offset: 0
The a(4)=3 3-alternating permutations of [4] are: [2 1 3 4 ] [3 1 2 4 ] and [4 1 2 3 ].
The a(5)=11 3-alternating permutations of [5] are: [2 1 3 5 4 ] [2 1 4 5 3 ] [3 1 2 5 4 ] [3 1 4 5 2 ] [3 2 4 5 1 ] [4 1 2 5 3 ] [4 1 3 5 2 ] [4 2 3 5 1 ] [5 1 2 4 3 ] [5 1 3 4 2 ] and [5 2 3 4 1 ].
Cf.
A178963,
A249583 (alternative definitions of 3-alternating permutations).
-
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t=1, add(b(u-j, o+j-1, irem(t+1, 3)), j=1..u),
add(b(u+j-1, o-j, irem(t+1, 3)), j=1..o)))
end:
a:= n-> b(0, n, 0):
seq(a(n), n=0..35); # Alois P. Heinz, Oct 27 2014
-
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, If[t == 1, Sum[b[u-j, o+j-1, Mod[t+1, 3]], {j, 1, u}], Sum[b[u+j-1, o-j, Mod[t+1, 3]], {j, 1, o}]]]; a[n_] := b[0, n, 0]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 22 2015, after Alois P. Heinz *)
A178964
E.g.f.: (1+sqrt(2)*sin(x/sqrt(2))*cosh(x/sqrt(2))+sin(x/sqrt(2))*sinh(x/sqrt(2)))/(cos(x/sqrt(2))*cosh(x/sqrt(2))).
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 14, 34, 69, 496, 2896, 11056, 33661, 349504, 2856944, 14873104, 60376809, 819786496, 8615785216, 56814228736, 288294050521, 4835447317504, 62112775514624, 495812444583424, 3019098162602349, 60283564499562496, 915153344223809536, 8575634961418940416, 60921822444067346581, 1411083019275488149504, 24716980773496372066304
Offset: 0
- Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page http://math.ucsd.edu/~remmel/
-
A178964_list := proc(dim) local E,DIM,n,k;
DIM := dim-1; E := array(0..DIM, 0..DIM); E[0,0] := 1;
for n from 1 to DIM do
if n mod 4 = 0 then E[n,0] := 0 ;
for k from n-1 by -1 to 0 do E[k,n-k] := E[k+1,n-k-1] + E[k,n-k-1] od;
else E[0,n] := 0;
for k from 1 by 1 to n do E[k,n-k] := E[k-1,n-k+1] + E[k-1,n-k] od;
fi od; [E[0,0],seq(E[k,0]+E[0,k],k=1..DIM)] end:
A178964_list(31); # Peter Luschny, Apr 02 2012
# Alternatively, using a bivariate exponential generating function:
A178964 := proc(n) local g, p, q;
g := (x,z) -> 2*exp(x*z)/(cosh(z)+cos(z));
p := (n,x) -> n!*coeff(series(g(x,z),z,n+2),z,n);
q := (n,m) -> if modp(n,m) = 0 then 0 else 1 fi:
(-1)^binomial(n,4)*p(n,q(n,4)) end:
seq(A178964(i),i=0..30); # Peter Luschny, Jun 06 2012
-
max = 30; s = Series[Sec[x]*Sech[x]+Tan[x]*(Sqrt[2]+Tanh[x]) /. x -> x/Sqrt[2], {x, 0, max+1}]; a[n_] := SeriesCoefficient[s, {x, 0, n}]*n!; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Feb 25 2014 *)
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == 0,
Sum[b[u - j, o + j - 1, Mod[t + 1, 4]], {j, 1, u}],
Sum[b[u + j - 1, o - j, Mod[t + 1, 4]], {j, 1, o}]]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 35] (* Jean-François Alcover, Apr 21 2021, after Alois P. Heinz in A250283 *)
-
x='x+O('x^30);round(Vec(serlaplace((1+sqrt(2)*sin(x/sqrt(2))*cosh( x/sqrt(2)) + sin(x/sqrt(2))*sinh(x/sqrt(2)))/(cos(x/sqrt(2))*cosh(x/sqrt(2))))))
-
# Function A(m,n) defined in A181936.
A178964 = lambda n: (-1)^int(is_odd(n//4))*A(4,n)
print([A178964(n) for n in (0..30)]) # Peter Luschny, Jan 24 2017
A181936
Number of 5-alternating permutations.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 5, 20, 55, 125, 251, 2300, 15775, 70500, 249250, 750751, 10006375, 97226875, 601638125, 2886735625, 11593285251, 202808749375, 2550175096250, 20163891580625, 122209131374375, 613498040952501, 13287626090593750, 205055676105734375
Offset: 0
- Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page.
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- R. J. Cano, PARI Sequencer program.
- Peter Luschny, An old operation on sequences: the Seidel transform.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
-
A181936_list := proc(dim) local E,DIM,n,k;
DIM := dim-1; E := array(0..DIM, 0..DIM); E[0,0] := 1;
for n from 1 to DIM do
if n mod 5 = 0 then E[n,0] := 0 ;
for k from n-1 by -1 to 0 do E[k,n-k] := E[k+1,n-k-1] + E[k,n-k-1] od;
else E[0,n] := 0;
for k from 1 by 1 to n do E[k,n-k] := E[k-1,n-k+1] + E[k-1,n-k] od;
fi od; [E[0,0],seq(E[k,0]+E[0,k],k=1..DIM)] end:
A181936_list(28);
# Alternatively, using an exponential generating function:
A181936_list := proc(n) local H,F,i; H := (r,s) -> hypergeom(r,s/5,-(t/5)^5);
F := t -> 1+(t^5*H([1],[6,7,8,9,10])+5*t^4*H([],[6,7,8,9])+20*t^3*H([],[4,6,7,8])+60*t^2*H([],[3,4,6,7])+120*t^1*H([],[2,3,4,6]))/(120*H([],[2,3,4,1])); seq(i!*coeff(series(F(t),t,n+1),t,i),i=0..n-1) end:
-
dim = 27; e[0, 0] = 1; e[n_ /; Mod[n, 5] == 0 && 0 <= n <= dim, 0] = 0; e[k_ /; 0 <= k <= dim, n_ /; 0 <= n <= dim] /; Mod[n+k, 5] == 0 := e[k, n] = e[k, n-1] + e[k+1, n-1]; e[0, n_ /; Mod[n, 5] == 0 && 0 <= n <= dim] = 0; e[k_ /; 0 <= k <= dim, n_ /; 0 <= n <= dim] /; Mod[n+k, 5] != 0 := e[k, n] = e[k-1, n] + e[k-1, n+1]; e[, ] = 0; a[0] = 1; a[n_] := e[n, 0] + e[0, n]; Table[a[n], {n, 0, dim}] (* Jean-François Alcover, Jun 27 2013, translated and adapted from Maple *)
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == 0,
Sum[b[u - j, o + j - 1, Mod[t + 1, 5]], {j, 1, u}],
Sum[b[u + j - 1, o - j, Mod[t + 1, 5]], {j, 1, o}]]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 35] (* Jean-François Alcover, Apr 21 2021, after Alois P. Heinz in A250283 *)
nmax = 30; CoefficientList[Series[1 + Sum[(x^(5 - k) * HypergeometricPFQ[{1}, {6/5 - k/5, 7/5 - k/5, 8/5 - k/5, 9/5 - k/5, 2 - k/5}, -x^5/3125])/(5 - k)!, {k, 0, 4}] / HypergeometricPFQ[{}, {1/5, 2/5, 3/5, 4/5}, -x^5/3125], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 21 2021 *)
-
@cached_function
def A(m,n):
if n == 0: return 1
s = -1 if m.divides(n) else 1
t = [m*k for k in (0..(n-1)//m)]
return s*add(binomial(n,k)*A(m,k) for k in t)
A181936 = lambda n: (-1)^int(is_odd(n//5))*A(5,n)
print([A181936(n) for n in (0..30)]) # Peter Luschny, Jan 24 2017
A249583
Number of permutations p of [n] such that p(i) > p(i+1) iff i == 2 (mod 3).
Original entry on oeis.org
1, 1, 1, 2, 5, 9, 40, 169, 477, 3194, 19241, 74601, 666160, 5216485, 25740261, 287316122, 2769073949, 16591655817, 222237912664, 2543467934449, 17929265150637, 280180369563194, 3712914075133121, 30098784753112329, 537546603651987424, 8094884285992309261
Offset: 0
a(2) = 1: 12.
a(3) = 2: 132, 231.
a(4) = 5: 1324, 1423, 2314, 2413, 3412.
a(5) = 9: 13245, 14235, 15234, 23145, 24135, 25134, 34125, 35124, 45123.
a(6) = 40: 132465, 132564, 142365, 142563, 143562, 152364, 152463, 153462, 162354, 162453, 163452, 231465, 231564, 241365, 241563, 243561, 251364, 251463, 253461, 261354, 261453, 263451, 341265, 341562, 342561, 351264, 351462, 352461, 361254, 361452, 362451, 451263, 451362, 452361, 461253, 461352, 462351, 561243, 561342, 562341.
a(7) = 169: 1324657, 1324756, 1325647, ..., 6723514, 6724513, 6734512.
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- J. M. Luck, On the frequencies of patterns of rises and falls, arXiv:1309.7764, 2013
- Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page
- R. P. Stanley, A survey of alternating permutations, arXiv:0912.4240, 2009
-
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t=2, add(b(u-j, o+j-1, irem(t+1, 3)), j=1..u),
add(b(u+j-1, o-j, irem(t+1, 3)), j=1..o)))
end:
a:= n-> b(0, n, 0):
seq(a(n), n=0..35);
-
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == 2, Sum[b[u - j, o + j - 1, Mod[t+1, 3]], {j, 1, u}], Sum[b[u + j - 1, o - j, Mod[t+1, 3]], {j, 1, o}]]];
a[n_] := b[0, n, 0];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)
Showing 1-7 of 7 results.
Comments