cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A181937 André numbers. Square array A(n,k), n>=2, k>=0, read by antidiagonals upwards, A(n,k) = n-alternating permutations of length k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 3, 16, 1, 1, 1, 1, 1, 9, 61, 1, 1, 1, 1, 1, 4, 19, 272, 1, 1, 1, 1, 1, 1, 14, 99, 1385, 1, 1, 1, 1, 1, 1, 5, 34, 477, 7936, 1, 1, 1, 1, 1, 1, 1, 20, 69, 1513, 50521, 1, 1, 1, 1, 1, 1, 1, 6, 55, 496, 11259, 353792
Offset: 0

Views

Author

Peter Luschny, Apr 03 2012

Keywords

Comments

The André numbers were studied by Désiré André in the case n=2 around 1880. The present author suggests that the numbers A(n,k) be named in honor of André. Already in 1877 Ludwig Seidel gave an efficient algorithm for computing the coefficients of secant and tangent which immediately carries over to the general case. Anthony Mendes and Jeffrey Remmel give exponential generating functions for the general case.

Examples

			n\k [0][1][2][3][4] [5] [6]  [7]   [8]   [9]  [10]    [11]
[1]  1, 1, 1, 1, 1,  1,  1,   1,    1,    1,    1,       1  [A000012]
[2]  1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792  [A000111]
[3]  1, 1, 1, 1, 3,  9, 19,  99,  477, 1513, 11259,  74601  [A178963]
[4]  1, 1, 1, 1, 1,  4, 14,  34,   69,  496,  2896,  11056  [A178964]
[5]  1, 1, 1, 1, 1,  1,  5,  20,   55,  125,   251,   2300  [A181936]
[6]  1, 1, 1, 1, 1,  1,  1,   6,   27,   83,   209,    461  [A250283]
		

References

  • Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page.

Crossrefs

Programs

  • Julia
    # Signed version.
    using Memoize
    @memoize function André(m, n)
        n ≤ 0 && return 1
        r = range(0, stop=n-1, step=m)
        S = sum(binomial(n, k) * André(m, k) for k in r)
        n % m == 0 ? -S : S
    end
    for m in 1:8 println([André(m, n) for n in 0:11]) end # Peter Luschny, Feb 09 2019
  • Maple
    A181937_list := proc(n, len) local E,dim,i,k;  # Seidel's boustrophedon transform
    dim := len-1; E := array(0..dim, 0..dim); E[0,0] := 1;
    for i from 1 to dim do
    if i mod n = 0 then E[i,0] := 0 ;
       for k from i-1 by -1 to 0 do E[k,i-k] := E[k+1,i-k-1] + E[k,i-k-1] od;
    else E[0,i] := 0;
       for k from 1 by 1 to i do E[k,i-k] := E[k-1,i-k+1] + E[k-1,i-k] od;
    fi od; [E[0,0],seq(E[k,0]+E[0,k],k=1..dim)] end:
    for n from 2 to 6 do print(A181937_list(n,12)) od;
    # Alternative, with an additional row 0:
    Andre := proc(m, n) option remember; local k; ifelse(n <= 0, 1, ifelse(m = 0, 1,
    -add(binomial(n, k) * Andre(m, k), k = 0..n-1, m))) end:
    T := (n, k) -> abs(Andre(n, k)): seq(lprint(seq(T(n, k), k = 0..11)), n = 0..9);
    # Peter Luschny, Aug 19 2024
  • Mathematica
    dim = 13; e[][0, 0] = 1; e[m][n_ /; 0 <= n <= dim, 0] /; Mod[n, m] == 0 = 0; e[m_][k_ /; 0 <= k <= dim, n_ /; 0 <= n <= dim] /; Mod[n+k, m] == 0 := e[m][k, n] = e[m][k, n-1] + e[m][k+1, n-1]; e[m_][0, n_ /; 0 <= n <= dim] /; Mod[n, m] == 0 = 0; e[m_][k_ /; 0 <= k <= dim, n_ /; 0 <= n <= dim] /; Mod[n+k, m] != 0 := e[m][k, n] = e[m][k-1, n] + e[m][k-1, n+1]; e[][, ] = 0; a[, 0] = 1; a[m_, n_] := e[m][n, 0] + e[m][0, n]; Table[a[m-n+1, n], {m, 1, dim-1}, {n, 0, m-1}] // Flatten (* Jean-François Alcover, Jul 23 2013, after Maple *)
    b[r_, u_, o_, t_] := b[r, u, o, t] = If[u + o == 0, 1, If[t == 0, Sum[b[r, u - j, o + j - 1, Mod[t + 1, r]], {j, 1, u}], Sum[b[r, u + j - 1, o - j, Mod[t + 1, r]], {j, 1, o}]]]; A[n_, k_] := b[n, k, 0, 0];
    Table[A[n - k, k], {n, 2, 13}, {k, 0, n - 2}] // Flatten
    (* Jean-François Alcover, Nov 22 2023, after Alois P. Heinz in A250283 *)
    Andre[n_, k_] := Andre[n, k] = If[k <= 0, 1, If[n == 0, 1, -Sum[Binomial[k, j] Andre[n, j], {j, 0, k-1, n}]]];
    Table[Abs[Andre[n, k]], {n, 0, 6}, {k, 0, 11}] // MatrixForm
    (* Peter Luschny, Aug 19 2024 *)
  • Sage
    @cached_function
    def A(m, n):
        if n == 0: return 1
        s = -1 if m.divides(n) else 1
        t = [m*k for k in (0..(n-1)//m)]
        return s*add(binomial(n, k)*A(m, k) for k in t)
    A181937_row = lambda m, n: (-1)^int(is_odd(n//m))*A(m, n)
    for n in (1..6): print([A181937_row(n, k) for k in (0..20)]) # Peter Luschny, Feb 06 2017
    

A178963 E.g.f.: (3+2*sqrt(3)*exp(x/2)*sin(sqrt(3)*x/2))/(exp(-x)+2*exp(x/2)*cos(sqrt(3)*x/2)).

Original entry on oeis.org

1, 1, 1, 1, 3, 9, 19, 99, 477, 1513, 11259, 74601, 315523, 3052323, 25740261, 136085041, 1620265923, 16591655817, 105261234643, 1488257158851, 17929265150637, 132705221399353, 2172534146099019, 30098784753112329, 254604707462013571, 4736552519729393091, 74180579084559895221, 705927677520644167681, 14708695606607601165843, 256937013876000351610089, 2716778010767155313771539
Offset: 0

Views

Author

N. J. A. Sloane, Dec 31 2010

Keywords

Comments

According to Mendes and Remmel, p. 56, this is the e.g.f. for 3-alternating permutations.

Crossrefs

Number of m-alternating permutations: A000012 (m=1), A000111 (m=2), A178963 (m=3), A178964 (m=4), A181936 (m=5).
Cf. A249402, A249583 (alternative definitions of 3-alternating permutations).

Programs

  • Maple
    A178963_list := proc(dim) local E,DIM,n,k;
    DIM := dim-1; E := array(0..DIM, 0..DIM); E[0,0] := 1;
    for n from 1 to DIM do
    if n mod 3 = 0 then E[n,0] := 0 ;
       for k from n-1 by -1 to 0 do E[k,n-k] := E[k+1,n-k-1] + E[k,n-k-1] od;
    else E[0,n] := 0;
       for k from 1 by 1 to n do E[k,n-k] := E[k-1,n-k+1] + E[k-1,n-k] od;
    fi od; [E[0,0],seq(E[k,0]+E[0,k],k=1..DIM)] end:
    A178963_list(30);  # Peter Luschny, Apr 02 2012
    # Alternatively, using a bivariate exponential generating function:
    A178963 := proc(n) local g, p, q;
    g := (x,z) -> 3*exp(x*z)/(exp(z)+2*exp(-z/2)*cos(z*sqrt(3)/2));
    p := (n,x) -> n!*coeff(series(g(x,z),z,n+2),z,n);
    q := (n,m) -> if modp(n,m) = 0 then 0 else 1 fi:
    (-1)^floor(n/3)*p(n,q(n,3)) end:
    seq(A178963(i),i=0..30); # Peter Luschny, Jun 06 2012
    # third Maple program:
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
         `if`(t=0, add(b(u-j, o+j-1, irem(t+1, 3)), j=1..u),
                   add(b(u+j-1, o-j, irem(t+1, 3)), j=1..o)))
        end:
    a:= n-> b(n, 0, 0):
    seq(a(n), n=0..35);  # Alois P. Heinz, Oct 29 2014
  • Mathematica
    max = 30; f[x_] := (E^x*(2*Sqrt[3]*E^(x/2)*Sin[(Sqrt[3]*x)/2] + 3))/(2*E^((3*x)/2)*Cos[(Sqrt[3]*x)/2] + 1); CoefficientList[Series[f[x], {x, 0, max}], x]*Range[0, max]! // Simplify (* Jean-François Alcover, Sep 16 2013 *)
  • Sage
    # uses[A from A181936]
    A178963 = lambda n: (-1)^int(is_odd(n//3))*A(3,n)
    print([A178963(n) for n in (0..30)]) # Peter Luschny, Jan 24 2017

Formula

a(3*n) = A002115(n). - Peter Luschny, Aug 02 2012

A211212 4-alternating permutations of length 4n.

Original entry on oeis.org

1, 1, 69, 33661, 60376809, 288294050521, 3019098162602349, 60921822444067346581, 2159058013333667522020689, 125339574046311949415000577841, 11289082167259099068433198467575829, 1510335441937894173173702826484473600301
Offset: 0

Views

Author

Peter Luschny, Apr 04 2012

Keywords

Comments

a(n) = A181985(4,n).

Crossrefs

Programs

  • Maple
    A211212 := proc(n) local E, dim, i, k; dim := 4*(n-1);
    E := array(0..dim, 0..dim); E[0, 0] := 1;
    for i from 1 to dim do
       if i mod 4 = 0 then E[i, 0] := 0 ;
          for k from i-1 by -1 to 0 do E[k, i-k] := E[k+1, i-k-1] + E[k, i-k-1] od;
       else E[0, i] := 0;
          for k from 1 by 1 to i do E[k, i-k] := E[k-1, i-k+1] + E[k-1, i-k] od;
       fi od;
    E[0, dim] end:
    seq(A211212(i), i = 1..12);
    A211212_list := proc(size) local E, S;
    E := 2*exp(x*z)/(cosh(z)+cos(z));
    S := z -> series(E, z, 4*(size+1));
    seq((-1)^n*(4*n)!*subs(x=0, coeff(S(z), z, 4*n)), n=0..size-1) end:
    A211212_list(12); # Peter Luschny, Jun 06 2016
  • Mathematica
    A181985[n_, len_] := Module[{e, dim = n (len - 1)}, e[0, 0] = 1; For[i = 1, i <= dim, i++, If[Mod[i, n] == 0, e[i, 0] = 0; For[k = i - 1, k >= 0, k--, e[k, i - k] = e[k + 1, i - k - 1] + e[k, i - k - 1]], e[0, i] = 0; For[k = 1, k <= i, k++, e[k, i - k] = e[k - 1, i - k + 1] + e[k - 1, i - k]]]]; Table[e[0, n k], {k, 0, len - 1}]];
    a[n_] := A181985[4, n + 1] // Last;
    Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Jun 29 2019 *)
  • Sage
    # uses[A from A181936]
    A211212 = lambda n: A(4,4*n)*(-1)^n
    print([A211212(n) for n in (0..11)]) # Peter Luschny, Jan 24 2017

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1) * binomial(4*n,4*k) * a(n-k). - Ilya Gutkovskiy, Jan 27 2020
E.g.f.: 1/(cos(x/sqrt(2))*cosh(x/sqrt(2))) = 1 + 1*z^4/4! + 69*z^8/8! + 33661*z^12/12! + ... - Michael Wallner, Nov 17 2020
a(n) ~ 2^(10*n + 9/2) * n^(4*n + 1/2) / (cosh(Pi/2) * Pi^(4*n + 1/2) * exp(4*n)). - Vaclav Kotesovec, Nov 17 2020

A178964 E.g.f.: (1+sqrt(2)*sin(x/sqrt(2))*cosh(x/sqrt(2))+sin(x/sqrt(2))*sinh(x/sqrt(2)))/(cos(x/sqrt(2))*cosh(x/sqrt(2))).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 14, 34, 69, 496, 2896, 11056, 33661, 349504, 2856944, 14873104, 60376809, 819786496, 8615785216, 56814228736, 288294050521, 4835447317504, 62112775514624, 495812444583424, 3019098162602349, 60283564499562496, 915153344223809536, 8575634961418940416, 60921822444067346581, 1411083019275488149504, 24716980773496372066304
Offset: 0

Views

Author

N. J. A. Sloane, Dec 31 2010

Keywords

Comments

According to Mendes and Remmel, p. 56, this is the e.g.f. for 4-alternating permutations.

References

  • Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page http://math.ucsd.edu/~remmel/

Crossrefs

Number of m-alternating permutations: A000012 (m=1), A000111 (m=2), A178963 (m=3), A178964 (m=4), A181936 (m=5).
Cf. A181937.

Programs

  • Maple
    A178964_list := proc(dim) local E,DIM,n,k;
    DIM := dim-1; E := array(0..DIM, 0..DIM); E[0,0] := 1;
    for n from 1 to DIM do
    if n mod 4 = 0 then E[n,0] := 0 ;
       for k from n-1 by -1 to 0 do E[k,n-k] := E[k+1,n-k-1] + E[k,n-k-1] od;
    else E[0,n] := 0;
       for k from 1 by 1 to n do E[k,n-k] := E[k-1,n-k+1] + E[k-1,n-k] od;
    fi od; [E[0,0],seq(E[k,0]+E[0,k],k=1..DIM)] end:
    A178964_list(31); # Peter Luschny, Apr 02 2012
    # Alternatively, using a bivariate exponential generating function:
    A178964 := proc(n) local g, p, q;
    g := (x,z) -> 2*exp(x*z)/(cosh(z)+cos(z));
    p := (n,x) -> n!*coeff(series(g(x,z),z,n+2),z,n);
    q := (n,m) -> if modp(n,m) = 0 then 0 else 1 fi:
    (-1)^binomial(n,4)*p(n,q(n,4)) end:
    seq(A178964(i),i=0..30); # Peter Luschny, Jun 06 2012
  • Mathematica
    max = 30; s = Series[Sec[x]*Sech[x]+Tan[x]*(Sqrt[2]+Tanh[x]) /. x -> x/Sqrt[2], {x, 0, max+1}]; a[n_] := SeriesCoefficient[s, {x, 0, n}]*n!; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Feb 25 2014 *)
    b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == 0,
         Sum[b[u - j, o + j - 1, Mod[t + 1, 4]], {j, 1, u}],
         Sum[b[u + j - 1, o - j, Mod[t + 1, 4]], {j, 1, o}]]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 35] (* Jean-François Alcover, Apr 21 2021, after Alois P. Heinz in A250283 *)
  • PARI
    x='x+O('x^30);round(Vec(serlaplace((1+sqrt(2)*sin(x/sqrt(2))*cosh( x/sqrt(2)) + sin(x/sqrt(2))*sinh(x/sqrt(2)))/(cos(x/sqrt(2))*cosh(x/sqrt(2))))))
  • Sage
    # Function A(m,n) defined in A181936.
    A178964 = lambda n: (-1)^int(is_odd(n//4))*A(4,n)
    print([A178964(n) for n in (0..30)]) # Peter Luschny, Jan 24 2017
    

Formula

a(n) ~ n! * 2^(n/2+1) * (-sqrt(2)*(-1+(-1)^n) - 2*cos(n*Pi/2)*(sinh(Pi/2)-1)/cosh(Pi/2) + (1+(-1)^n)*(1 + sinh(Pi/2))/cosh(Pi/2)) / Pi^(n+1). - Vaclav Kotesovec, Sep 09 2014
Showing 1-4 of 4 results.