A181937
André numbers. Square array A(n,k), n>=2, k>=0, read by antidiagonals upwards, A(n,k) = n-alternating permutations of length k.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 3, 16, 1, 1, 1, 1, 1, 9, 61, 1, 1, 1, 1, 1, 4, 19, 272, 1, 1, 1, 1, 1, 1, 14, 99, 1385, 1, 1, 1, 1, 1, 1, 5, 34, 477, 7936, 1, 1, 1, 1, 1, 1, 1, 20, 69, 1513, 50521, 1, 1, 1, 1, 1, 1, 1, 6, 55, 496, 11259, 353792
Offset: 0
n\k [0][1][2][3][4] [5] [6] [7] [8] [9] [10] [11]
[1] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 [A000012]
[2] 1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792 [A000111]
[3] 1, 1, 1, 1, 3, 9, 19, 99, 477, 1513, 11259, 74601 [A178963]
[4] 1, 1, 1, 1, 1, 4, 14, 34, 69, 496, 2896, 11056 [A178964]
[5] 1, 1, 1, 1, 1, 1, 5, 20, 55, 125, 251, 2300 [A181936]
[6] 1, 1, 1, 1, 1, 1, 1, 6, 27, 83, 209, 461 [A250283]
- Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page.
- Alois P. Heinz, Antidiagonals k = 0..140, flattened
- Désiré André, Développement de séc x et de tang x, C. R. Math. Acad. Sci. Paris 88 (1879), 965-967.
- Désiré André, Sur les permutations alternées, J. Math. pur. appl., 7 (1881), 167-184.
- Peter Luschny, An old operation on sequences: the Seidel transform.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
-
# Signed version.
using Memoize
@memoize function André(m, n)
n ≤ 0 && return 1
r = range(0, stop=n-1, step=m)
S = sum(binomial(n, k) * André(m, k) for k in r)
n % m == 0 ? -S : S
end
for m in 1:8 println([André(m, n) for n in 0:11]) end # Peter Luschny, Feb 09 2019
-
A181937_list := proc(n, len) local E,dim,i,k; # Seidel's boustrophedon transform
dim := len-1; E := array(0..dim, 0..dim); E[0,0] := 1;
for i from 1 to dim do
if i mod n = 0 then E[i,0] := 0 ;
for k from i-1 by -1 to 0 do E[k,i-k] := E[k+1,i-k-1] + E[k,i-k-1] od;
else E[0,i] := 0;
for k from 1 by 1 to i do E[k,i-k] := E[k-1,i-k+1] + E[k-1,i-k] od;
fi od; [E[0,0],seq(E[k,0]+E[0,k],k=1..dim)] end:
for n from 2 to 6 do print(A181937_list(n,12)) od;
# Alternative, with an additional row 0:
Andre := proc(m, n) option remember; local k; ifelse(n <= 0, 1, ifelse(m = 0, 1,
-add(binomial(n, k) * Andre(m, k), k = 0..n-1, m))) end:
T := (n, k) -> abs(Andre(n, k)): seq(lprint(seq(T(n, k), k = 0..11)), n = 0..9);
# Peter Luschny, Aug 19 2024
-
dim = 13; e[][0, 0] = 1; e[m][n_ /; 0 <= n <= dim, 0] /; Mod[n, m] == 0 = 0; e[m_][k_ /; 0 <= k <= dim, n_ /; 0 <= n <= dim] /; Mod[n+k, m] == 0 := e[m][k, n] = e[m][k, n-1] + e[m][k+1, n-1]; e[m_][0, n_ /; 0 <= n <= dim] /; Mod[n, m] == 0 = 0; e[m_][k_ /; 0 <= k <= dim, n_ /; 0 <= n <= dim] /; Mod[n+k, m] != 0 := e[m][k, n] = e[m][k-1, n] + e[m][k-1, n+1]; e[][, ] = 0; a[, 0] = 1; a[m_, n_] := e[m][n, 0] + e[m][0, n]; Table[a[m-n+1, n], {m, 1, dim-1}, {n, 0, m-1}] // Flatten (* Jean-François Alcover, Jul 23 2013, after Maple *)
b[r_, u_, o_, t_] := b[r, u, o, t] = If[u + o == 0, 1, If[t == 0, Sum[b[r, u - j, o + j - 1, Mod[t + 1, r]], {j, 1, u}], Sum[b[r, u + j - 1, o - j, Mod[t + 1, r]], {j, 1, o}]]]; A[n_, k_] := b[n, k, 0, 0];
Table[A[n - k, k], {n, 2, 13}, {k, 0, n - 2}] // Flatten
(* Jean-François Alcover, Nov 22 2023, after Alois P. Heinz in A250283 *)
Andre[n_, k_] := Andre[n, k] = If[k <= 0, 1, If[n == 0, 1, -Sum[Binomial[k, j] Andre[n, j], {j, 0, k-1, n}]]];
Table[Abs[Andre[n, k]], {n, 0, 6}, {k, 0, 11}] // MatrixForm
(* Peter Luschny, Aug 19 2024 *)
-
@cached_function
def A(m, n):
if n == 0: return 1
s = -1 if m.divides(n) else 1
t = [m*k for k in (0..(n-1)//m)]
return s*add(binomial(n, k)*A(m, k) for k in t)
A181937_row = lambda m, n: (-1)^int(is_odd(n//m))*A(m, n)
for n in (1..6): print([A181937_row(n, k) for k in (0..20)]) # Peter Luschny, Feb 06 2017
A178963
E.g.f.: (3+2*sqrt(3)*exp(x/2)*sin(sqrt(3)*x/2))/(exp(-x)+2*exp(x/2)*cos(sqrt(3)*x/2)).
Original entry on oeis.org
1, 1, 1, 1, 3, 9, 19, 99, 477, 1513, 11259, 74601, 315523, 3052323, 25740261, 136085041, 1620265923, 16591655817, 105261234643, 1488257158851, 17929265150637, 132705221399353, 2172534146099019, 30098784753112329, 254604707462013571, 4736552519729393091, 74180579084559895221, 705927677520644167681, 14708695606607601165843, 256937013876000351610089, 2716778010767155313771539
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- J. M. Luck, On the frequencies of patterns of rises and falls, arXiv preprint arXiv:1309.7764 [cond-mat.stat-mech], 2013-2014.
- Peter Luschny, An old operation on sequences: the Seidel transform.
- Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
Cf.
A249402,
A249583 (alternative definitions of 3-alternating permutations).
-
A178963_list := proc(dim) local E,DIM,n,k;
DIM := dim-1; E := array(0..DIM, 0..DIM); E[0,0] := 1;
for n from 1 to DIM do
if n mod 3 = 0 then E[n,0] := 0 ;
for k from n-1 by -1 to 0 do E[k,n-k] := E[k+1,n-k-1] + E[k,n-k-1] od;
else E[0,n] := 0;
for k from 1 by 1 to n do E[k,n-k] := E[k-1,n-k+1] + E[k-1,n-k] od;
fi od; [E[0,0],seq(E[k,0]+E[0,k],k=1..DIM)] end:
A178963_list(30); # Peter Luschny, Apr 02 2012
# Alternatively, using a bivariate exponential generating function:
A178963 := proc(n) local g, p, q;
g := (x,z) -> 3*exp(x*z)/(exp(z)+2*exp(-z/2)*cos(z*sqrt(3)/2));
p := (n,x) -> n!*coeff(series(g(x,z),z,n+2),z,n);
q := (n,m) -> if modp(n,m) = 0 then 0 else 1 fi:
(-1)^floor(n/3)*p(n,q(n,3)) end:
seq(A178963(i),i=0..30); # Peter Luschny, Jun 06 2012
# third Maple program:
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t=0, add(b(u-j, o+j-1, irem(t+1, 3)), j=1..u),
add(b(u+j-1, o-j, irem(t+1, 3)), j=1..o)))
end:
a:= n-> b(n, 0, 0):
seq(a(n), n=0..35); # Alois P. Heinz, Oct 29 2014
-
max = 30; f[x_] := (E^x*(2*Sqrt[3]*E^(x/2)*Sin[(Sqrt[3]*x)/2] + 3))/(2*E^((3*x)/2)*Cos[(Sqrt[3]*x)/2] + 1); CoefficientList[Series[f[x], {x, 0, max}], x]*Range[0, max]! // Simplify (* Jean-François Alcover, Sep 16 2013 *)
-
# uses[A from A181936]
A178963 = lambda n: (-1)^int(is_odd(n//3))*A(3,n)
print([A178963(n) for n in (0..30)]) # Peter Luschny, Jan 24 2017
A211212
4-alternating permutations of length 4n.
Original entry on oeis.org
1, 1, 69, 33661, 60376809, 288294050521, 3019098162602349, 60921822444067346581, 2159058013333667522020689, 125339574046311949415000577841, 11289082167259099068433198467575829, 1510335441937894173173702826484473600301
Offset: 0
-
A211212 := proc(n) local E, dim, i, k; dim := 4*(n-1);
E := array(0..dim, 0..dim); E[0, 0] := 1;
for i from 1 to dim do
if i mod 4 = 0 then E[i, 0] := 0 ;
for k from i-1 by -1 to 0 do E[k, i-k] := E[k+1, i-k-1] + E[k, i-k-1] od;
else E[0, i] := 0;
for k from 1 by 1 to i do E[k, i-k] := E[k-1, i-k+1] + E[k-1, i-k] od;
fi od;
E[0, dim] end:
seq(A211212(i), i = 1..12);
A211212_list := proc(size) local E, S;
E := 2*exp(x*z)/(cosh(z)+cos(z));
S := z -> series(E, z, 4*(size+1));
seq((-1)^n*(4*n)!*subs(x=0, coeff(S(z), z, 4*n)), n=0..size-1) end:
A211212_list(12); # Peter Luschny, Jun 06 2016
-
A181985[n_, len_] := Module[{e, dim = n (len - 1)}, e[0, 0] = 1; For[i = 1, i <= dim, i++, If[Mod[i, n] == 0, e[i, 0] = 0; For[k = i - 1, k >= 0, k--, e[k, i - k] = e[k + 1, i - k - 1] + e[k, i - k - 1]], e[0, i] = 0; For[k = 1, k <= i, k++, e[k, i - k] = e[k - 1, i - k + 1] + e[k - 1, i - k]]]]; Table[e[0, n k], {k, 0, len - 1}]];
a[n_] := A181985[4, n + 1] // Last;
Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Jun 29 2019 *)
-
# uses[A from A181936]
A211212 = lambda n: A(4,4*n)*(-1)^n
print([A211212(n) for n in (0..11)]) # Peter Luschny, Jan 24 2017
A178964
E.g.f.: (1+sqrt(2)*sin(x/sqrt(2))*cosh(x/sqrt(2))+sin(x/sqrt(2))*sinh(x/sqrt(2)))/(cos(x/sqrt(2))*cosh(x/sqrt(2))).
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 14, 34, 69, 496, 2896, 11056, 33661, 349504, 2856944, 14873104, 60376809, 819786496, 8615785216, 56814228736, 288294050521, 4835447317504, 62112775514624, 495812444583424, 3019098162602349, 60283564499562496, 915153344223809536, 8575634961418940416, 60921822444067346581, 1411083019275488149504, 24716980773496372066304
Offset: 0
- Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page http://math.ucsd.edu/~remmel/
-
A178964_list := proc(dim) local E,DIM,n,k;
DIM := dim-1; E := array(0..DIM, 0..DIM); E[0,0] := 1;
for n from 1 to DIM do
if n mod 4 = 0 then E[n,0] := 0 ;
for k from n-1 by -1 to 0 do E[k,n-k] := E[k+1,n-k-1] + E[k,n-k-1] od;
else E[0,n] := 0;
for k from 1 by 1 to n do E[k,n-k] := E[k-1,n-k+1] + E[k-1,n-k] od;
fi od; [E[0,0],seq(E[k,0]+E[0,k],k=1..DIM)] end:
A178964_list(31); # Peter Luschny, Apr 02 2012
# Alternatively, using a bivariate exponential generating function:
A178964 := proc(n) local g, p, q;
g := (x,z) -> 2*exp(x*z)/(cosh(z)+cos(z));
p := (n,x) -> n!*coeff(series(g(x,z),z,n+2),z,n);
q := (n,m) -> if modp(n,m) = 0 then 0 else 1 fi:
(-1)^binomial(n,4)*p(n,q(n,4)) end:
seq(A178964(i),i=0..30); # Peter Luschny, Jun 06 2012
-
max = 30; s = Series[Sec[x]*Sech[x]+Tan[x]*(Sqrt[2]+Tanh[x]) /. x -> x/Sqrt[2], {x, 0, max+1}]; a[n_] := SeriesCoefficient[s, {x, 0, n}]*n!; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Feb 25 2014 *)
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == 0,
Sum[b[u - j, o + j - 1, Mod[t + 1, 4]], {j, 1, u}],
Sum[b[u + j - 1, o - j, Mod[t + 1, 4]], {j, 1, o}]]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 35] (* Jean-François Alcover, Apr 21 2021, after Alois P. Heinz in A250283 *)
-
x='x+O('x^30);round(Vec(serlaplace((1+sqrt(2)*sin(x/sqrt(2))*cosh( x/sqrt(2)) + sin(x/sqrt(2))*sinh(x/sqrt(2)))/(cos(x/sqrt(2))*cosh(x/sqrt(2))))))
-
# Function A(m,n) defined in A181936.
A178964 = lambda n: (-1)^int(is_odd(n//4))*A(4,n)
print([A178964(n) for n in (0..30)]) # Peter Luschny, Jan 24 2017
Showing 1-4 of 4 results.
Comments