A250261
Number A(n,k) of permutations p of [n] such that p(i) > p(i+1) iff i = 1 + k*m for some m >= 0; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 4, 1, 1, 1, 2, 5, 1, 5, 1, 1, 1, 2, 3, 16, 1, 6, 1, 1, 1, 2, 3, 11, 61, 1, 7, 1, 1, 1, 2, 3, 4, 40, 272, 1, 8, 1, 1, 1, 2, 3, 4, 19, 99, 1385, 1, 9, 1, 1, 1, 2, 3, 4, 5, 78, 589, 7936, 1, 10, 1, 1, 1, 2, 3, 4, 5, 29, 217, 3194, 50521, 1, 11
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2, 1, 2, 2, 2, 2, 2, 2, 2, ...
3, 1, 5, 3, 3, 3, 3, 3, 3, ...
4, 1, 16, 11, 4, 4, 4, 4, 4, ...
5, 1, 61, 40, 19, 5, 5, 5, 5, ...
6, 1, 272, 99, 78, 29, 6, 6, 6, ...
7, 1, 1385, 589, 217, 133, 41, 7, 7, ...
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- J. M. Luck, On the frequencies of patterns of rises and falls, arXiv:1309.7764, 2013
- A. Mendes and J. Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page
- R. P. Stanley, A survey of alternating permutations, arXiv:0912.4240, 2009
-
b:= proc(u, o, t, k) option remember; `if`(u+o=0, 1,
`if`(t=1, add(b(u-j, o+j-1, irem(t+1, k), k), j=1..u),
add(b(u+j-1, o-j, irem(t+1, k), k), j=1..o)))
end:
A:= (n, k)-> b(0, n, 0, `if`(k=0, n, k)):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[u_, o_, t_, k_] := b[u, o, t, k] = If[u+o == 0, 1, If[t == 1, Sum[ b[u-j, o+j-1, Mod[t+1, k], k], {j, 1, u}], Sum[ b[u+j-1, o-j, Mod[t+1, k], k], {j, 1, o}] ] ] ; A[n_, k_] := b[0, n, 0, If[k == 0, n, k]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 03 2015, after Alois P. Heinz *)
A178963
E.g.f.: (3+2*sqrt(3)*exp(x/2)*sin(sqrt(3)*x/2))/(exp(-x)+2*exp(x/2)*cos(sqrt(3)*x/2)).
Original entry on oeis.org
1, 1, 1, 1, 3, 9, 19, 99, 477, 1513, 11259, 74601, 315523, 3052323, 25740261, 136085041, 1620265923, 16591655817, 105261234643, 1488257158851, 17929265150637, 132705221399353, 2172534146099019, 30098784753112329, 254604707462013571, 4736552519729393091, 74180579084559895221, 705927677520644167681, 14708695606607601165843, 256937013876000351610089, 2716778010767155313771539
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- J. M. Luck, On the frequencies of patterns of rises and falls, arXiv preprint arXiv:1309.7764 [cond-mat.stat-mech], 2013-2014.
- Peter Luschny, An old operation on sequences: the Seidel transform.
- Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
Cf.
A249402,
A249583 (alternative definitions of 3-alternating permutations).
-
A178963_list := proc(dim) local E,DIM,n,k;
DIM := dim-1; E := array(0..DIM, 0..DIM); E[0,0] := 1;
for n from 1 to DIM do
if n mod 3 = 0 then E[n,0] := 0 ;
for k from n-1 by -1 to 0 do E[k,n-k] := E[k+1,n-k-1] + E[k,n-k-1] od;
else E[0,n] := 0;
for k from 1 by 1 to n do E[k,n-k] := E[k-1,n-k+1] + E[k-1,n-k] od;
fi od; [E[0,0],seq(E[k,0]+E[0,k],k=1..DIM)] end:
A178963_list(30); # Peter Luschny, Apr 02 2012
# Alternatively, using a bivariate exponential generating function:
A178963 := proc(n) local g, p, q;
g := (x,z) -> 3*exp(x*z)/(exp(z)+2*exp(-z/2)*cos(z*sqrt(3)/2));
p := (n,x) -> n!*coeff(series(g(x,z),z,n+2),z,n);
q := (n,m) -> if modp(n,m) = 0 then 0 else 1 fi:
(-1)^floor(n/3)*p(n,q(n,3)) end:
seq(A178963(i),i=0..30); # Peter Luschny, Jun 06 2012
# third Maple program:
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t=0, add(b(u-j, o+j-1, irem(t+1, 3)), j=1..u),
add(b(u+j-1, o-j, irem(t+1, 3)), j=1..o)))
end:
a:= n-> b(n, 0, 0):
seq(a(n), n=0..35); # Alois P. Heinz, Oct 29 2014
-
max = 30; f[x_] := (E^x*(2*Sqrt[3]*E^(x/2)*Sin[(Sqrt[3]*x)/2] + 3))/(2*E^((3*x)/2)*Cos[(Sqrt[3]*x)/2] + 1); CoefficientList[Series[f[x], {x, 0, max}], x]*Range[0, max]! // Simplify (* Jean-François Alcover, Sep 16 2013 *)
-
# uses[A from A181936]
A178963 = lambda n: (-1)^int(is_odd(n//3))*A(3,n)
print([A178963(n) for n in (0..30)]) # Peter Luschny, Jan 24 2017
A249583
Number of permutations p of [n] such that p(i) > p(i+1) iff i == 2 (mod 3).
Original entry on oeis.org
1, 1, 1, 2, 5, 9, 40, 169, 477, 3194, 19241, 74601, 666160, 5216485, 25740261, 287316122, 2769073949, 16591655817, 222237912664, 2543467934449, 17929265150637, 280180369563194, 3712914075133121, 30098784753112329, 537546603651987424, 8094884285992309261
Offset: 0
a(2) = 1: 12.
a(3) = 2: 132, 231.
a(4) = 5: 1324, 1423, 2314, 2413, 3412.
a(5) = 9: 13245, 14235, 15234, 23145, 24135, 25134, 34125, 35124, 45123.
a(6) = 40: 132465, 132564, 142365, 142563, 143562, 152364, 152463, 153462, 162354, 162453, 163452, 231465, 231564, 241365, 241563, 243561, 251364, 251463, 253461, 261354, 261453, 263451, 341265, 341562, 342561, 351264, 351462, 352461, 361254, 361452, 362451, 451263, 451362, 452361, 461253, 461352, 462351, 561243, 561342, 562341.
a(7) = 169: 1324657, 1324756, 1325647, ..., 6723514, 6724513, 6734512.
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- J. M. Luck, On the frequencies of patterns of rises and falls, arXiv:1309.7764, 2013
- Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page
- R. P. Stanley, A survey of alternating permutations, arXiv:0912.4240, 2009
-
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t=2, add(b(u-j, o+j-1, irem(t+1, 3)), j=1..u),
add(b(u+j-1, o-j, irem(t+1, 3)), j=1..o)))
end:
a:= n-> b(0, n, 0):
seq(a(n), n=0..35);
-
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == 2, Sum[b[u - j, o + j - 1, Mod[t+1, 3]], {j, 1, u}], Sum[b[u + j - 1, o - j, Mod[t+1, 3]], {j, 1, o}]]];
a[n_] := b[0, n, 0];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)
A250259
The number of 4-alternating permutations of [n].
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 19, 78, 217, 496, 3961, 25442, 105963, 349504, 3908059, 34227438, 190065457, 819786496, 11785687921, 130746521282, 907546301523, 4835447317504, 84965187064099, 1141012634368398, 9504085749177097, 60283564499562496, 1251854782837499881
Offset: 0
-
onestep := proc(n::integer,ups::integer,downs::integer,uplen::integer)
local thisstep,left,doup,tak,ret ;
option remember;
left := ups+downs ;
if left = 0 then
return 1;
end if;
thisstep := n-left+1 ;
if modp(thisstep-2,uplen+1) = 0 then
doup := false;
else
doup := true;
end if;
if doup then
ret := 0 ;
for tak from 1 to ups do
ret := ret+procname(n,ups-tak,downs+tak-1,uplen) ;
end do:
return ret ;
else
ret := 0 ;
for tak from 1 to downs do
ret := ret+procname(n,ups+tak-1,downs-tak,uplen) ;
end do:
return ret ;
end if;
end proc:
downupP := proc(n::integer,uplen::integer)
local ret,tak;
if n = 0 then
return 1;
end if;
ret := 0 ;
for tak from 1 to n do
ret := ret+onestep(n,n-tak,tak-1,uplen) ;
end do:
return ret ;
end proc:
A250259 :=proc(n)
downupP(n,3) ;
end proc:
seq(A250259(n),n=0..20) ; # R. J. Mathar, Nov 15 2014
# second Maple program:
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t=1, add(b(u-j, o+j-1, irem(t+1, 4)), j=1..u),
add(b(u+j-1, o-j, irem(t+1, 4)), j=1..o)))
end:
a:= n-> b(0, n, 0):
seq(a(n), n=0..35); # Alois P. Heinz, Nov 15 2014
-
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == 1, Sum[b[u - j, o + j - 1, Mod[t + 1, 4]], {j, 1, u}], Sum[b[u + j - 1, o - j, Mod[t + 1, 4]], {j, 1, o}]]]; a[n_] := b[0, n, 0]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)
A250260
The number of 5-alternating permutations of [n].
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 5, 29, 133, 412, 1041, 2300, 22991, 170832, 822198, 3114489, 10006375, 141705439, 1457872978, 9522474417, 48094772656, 202808749375, 3716808948931, 48860589990687, 403131250565618, 2545098156762649, 13287626090593750
Offset: 0
-
# dowupP defined in A250259.
A250260 :=proc(n)
downupP(n,4) ;
end proc:
seq(A250260(n),n=0..20) ;
# second Maple program:
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t=1, add(b(u-j, o+j-1, irem(t+1, 5)), j=1..u),
add(b(u+j-1, o-j, irem(t+1, 5)), j=1..o)))
end:
a:= n-> b(0, n, 0):
seq(a(n), n=0..35); # Alois P. Heinz, Nov 15 2014
-
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, If[t == 1, Sum[b[u-j, o+j-1, Mod[t+1, 5]], {j, 1, u}], Sum[b[u+j-1, o-j, Mod[t+1, 5]], {j, 1, o}]]]; a[n_] := b[0, n, 0]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 24 2015, after Alois P. Heinz *)
Showing 1-5 of 5 results.
Comments