A178978 a(n) = A144448(n+1)/8.
0, 2, 5, 1, 14, 20, 1, 35, 44, 2, 65, 77, 10, 104, 119, 5, 152, 170, 7, 209, 230, 28, 275, 299, 4, 350, 377, 5, 434, 464, 55, 527, 560, 22, 629, 665, 26, 740, 779, 91, 860, 902, 35, 989, 1034, 40, 1127, 1175, 136, 1274, 1325, 17
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
Programs
-
Maple
A061039 := proc(n) numer(1/9-1/n^2) ; end proc: A144448 := proc(n) A061039(1+2*n) ; end proc: A178978 := proc(n) A144448(n+1)/8 ; end proc: seq(A178978(n),n=0..80) ; # R. J. Mathar, Jan 06 2011
-
Mathematica
Table[Numerator[1/9 -1/(2*n+3)^2]/8, {n, 0, 75}] (* G. C. Greubel, Mar 06 2022 *)
-
Sage
[numerator(1/9 -1/(2*n+3)^2)/8 for n in (0..75)] # G. C. Greubel, Mar 06 2022
Formula
Trisections:
a(3*n) = A145911(n);
a(3*n+1) = A145910(n);
a(3*n+2) = A178977(n).
a(n) = 3*a(n-27) - 3*a(n-54) + a(n-81). - G. C. Greubel, Mar 06 2022
Comments