cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178979 Triangular array read by rows: T(n,k) is the number of set partitions of {1,2,...,n} in which the shortest block has length k (1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 4, 0, 1, 11, 3, 0, 1, 41, 10, 0, 0, 1, 162, 30, 10, 0, 0, 1, 715, 126, 35, 0, 0, 0, 1, 3425, 623, 56, 35, 0, 0, 0, 1, 17722, 2934, 364, 126, 0, 0, 0, 0, 1, 98253, 15165, 2220, 210, 126, 0, 0, 0, 0, 1, 580317, 86900, 10560, 330, 462, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Geoffrey Critzer, Jan 02 2011

Keywords

Comments

Row sums are Bell numbers A000110.
Column 1 is A000296 (shifted).
From Peter Luschny, Apr 05 2011: (Start)
Sum_{k>1} T(n,k) = A000296(n) count the set partitions with blocks of size > 1.
T(n,1) = A000296(n-1) count the set partitions with blocks of size = 1. Thus for the Bell numbers A000110(n) = Sum_{k>=1} T(n,k) = A000296(n-1) + A000296(n). (End)

Examples

			T(4,2) = card ({12|34, 13|24, 14|23}) = 3. - _Peter Luschny_, Apr 05 2011
Triangle begins:
    1;
    1,   1;
    4,   0,  1;
   11,   3,  0,  1;
   41,  10,  0,  0,  1;
  162,  30, 10,  0,  0,  1;
  715, 126, 35,  0,  0,  0,  1;
  ...
		

Crossrefs

Programs

  • Maple
    g := k-> exp(x)*(1-(GAMMA(k,x)/GAMMA(k))); egf := k-> exp(g(k))-exp(g(k+1));
    T := (n,k)-> n!*coeff(series(egf(k), x, n+1), x, n):
    seq(seq(T(n, k), k=1..n), n=1..9); # Peter Luschny, Apr 05 2011
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
           add(b(n-i*j, i+1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i)))
        end:
    T:= (n, k)-> b(n, k) -b(n, k+1):
    seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Mar 25 2016
  • Mathematica
    a[k_]:= Exp[x]-Sum[x^i/i!,{i,0,k}]; Transpose[Table[Range[20]! Rest[CoefficientList[Series[Exp[a[k-1]]-Exp[a[k]],{x,0,20}],x]],{k,1,9}]]//Grid

Formula

E.g.f. for column k: exp((exp(x) - Sum_{i=0..k-1} x^i/i!)) - exp((exp(x) - Sum_{i=0..k} x^i/i!)).
From Ludovic Schwob, Jan 15 2022: (Start)
T(2n,n) = A001700(n) = C(2n-1,n) for n>0.
T(2n-1,n-1) = A001700(n) = C(2n-1,n) for n>1. (End)