A178979 Triangular array read by rows: T(n,k) is the number of set partitions of {1,2,...,n} in which the shortest block has length k (1 <= k <= n).
1, 1, 1, 4, 0, 1, 11, 3, 0, 1, 41, 10, 0, 0, 1, 162, 30, 10, 0, 0, 1, 715, 126, 35, 0, 0, 0, 1, 3425, 623, 56, 35, 0, 0, 0, 1, 17722, 2934, 364, 126, 0, 0, 0, 0, 1, 98253, 15165, 2220, 210, 126, 0, 0, 0, 0, 1, 580317, 86900, 10560, 330, 462, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
T(4,2) = card ({12|34, 13|24, 14|23}) = 3. - _Peter Luschny_, Apr 05 2011 Triangle begins: 1; 1, 1; 4, 0, 1; 11, 3, 0, 1; 41, 10, 0, 0, 1; 162, 30, 10, 0, 0, 1; 715, 126, 35, 0, 0, 0, 1; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Peter Luschny, Set partitions
Programs
-
Maple
g := k-> exp(x)*(1-(GAMMA(k,x)/GAMMA(k))); egf := k-> exp(g(k))-exp(g(k+1)); T := (n,k)-> n!*coeff(series(egf(k), x, n+1), x, n): seq(seq(T(n, k), k=1..n), n=1..9); # Peter Luschny, Apr 05 2011 # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0, add(b(n-i*j, i+1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i))) end: T:= (n, k)-> b(n, k) -b(n, k+1): seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Mar 25 2016
-
Mathematica
a[k_]:= Exp[x]-Sum[x^i/i!,{i,0,k}]; Transpose[Table[Range[20]! Rest[CoefficientList[Series[Exp[a[k-1]]-Exp[a[k]],{x,0,20}],x]],{k,1,9}]]//Grid
Formula
E.g.f. for column k: exp((exp(x) - Sum_{i=0..k-1} x^i/i!)) - exp((exp(x) - Sum_{i=0..k} x^i/i!)).
From Ludovic Schwob, Jan 15 2022: (Start)
T(2n,n) = A001700(n) = C(2n-1,n) for n>0.
T(2n-1,n-1) = A001700(n) = C(2n-1,n) for n>1. (End)
Comments