cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178982 Partial sums of floor(Fibonacci(n)/2).

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 8, 14, 24, 41, 68, 112, 184, 300, 488, 793, 1286, 2084, 3376, 5466, 8848, 14321, 23176, 37504, 60688, 98200, 158896, 257105, 416010, 673124, 1089144, 1762278, 2851432, 4613721, 7465164, 12078896, 19544072, 31622980
Offset: 0

Views

Author

Mircea Merca, Jan 02 2011

Keywords

Comments

Partial sums of A004695.

Examples

			a(4) = 0 + 0 + 0 + 1 + 1 = 2.
		

Crossrefs

Programs

  • Maple
    seq(round(fibonacci(n+2)/2-(n+2)/3),n=0..40).
  • Mathematica
    f[n_] := Floor[Fibonacci@n/2]; Accumulate@ Array[f, 38, 0]

Formula

a(n) = round(Fibonacci(n+2)/2 - (n+2)/3).
a(n) = round(Fibonacci(n+2)/2 - n/3 - 1/2).
a(n) = floor(Fibonacci(n+2)/2 - n/3 - 1/2).
a(n) = ceiling(Fibonacci(n+2)/2 - (n+1)/3 - 1/2).
a(n) = a(n-3) + Fibonacci(n) - 1, n > 3.
a(n) = 2*a(n-1) - 2*a(n-4) + a(n-6), n > 5.
G.f.: -x^3 / ( (x^2+x+1)*(x^2+x-1)*(x-1)^2 ).
a(n) = (1/2) * (Fibonacci(n+2) + floor(n/3) - n - 1). - Ralf Stephan, Jan 19 2014