A179071 Chapman's "evil" determinants I.
1, -2, 1, 1, -18, -4, 1, 1, -70, 1, -882, -32, 1, 1, -182, 1, -29718, 1, 1, -1068, 1, 1, -500, -5604, -4030, 1, 1, -8890182, -776, 1, 1, -1744, 1, -113582, 1, -4832118, 1, 1, -1118, 1, -1111225770, 1, -1764132, -11018, 1, 1, 1, 1, -20000849130, -23156, 1
Offset: 2
Keywords
Examples
p_3 = 5 = 2*2+1 and the (2+1)-by-(2+1) matrix (L((j-i)/5)) is 0, 1, -1 1, 0, 1 -1, 1, 0 which has determinant -2, so a(3) = -2.
References
- Richard Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004, Section F5.
Links
- Robin Chapman, Determinants of Legendre symbol matrices, Acta Arith. 115 (2004), 231-244.
- Robin Chapman, Steinitz classes of unimodular lattices, European J. Combin. 25 (2004), 487-493.
- Robin Chapman, My evil determinant problem, 2009.
- Maxim Vsemirnov, On R. Chapman's "evil determinant": case p=1 (mod 4), arXiv:1108.4031 [math.NT], 2011-2012.
- Maxim Vsemirnov, On the evaluation of R. Chapman's "evil determinant", Linear Algebra Appl. 436(2012), 4101-4106.
- Wikipedia, Legendre symbol
Crossrefs
Programs
-
Mathematica
a[n_] := Module[{p, k}, p = Prime[n]; k = (p-1)/2; Det @ Table[JacobiSymbol[ j-i, p], {i, 1, k+1}, {j, 1, k+1}]]; Table[a[n], {n, 2, 52}] (* Jean-François Alcover, Nov 18 2018 *)
-
PARI
a(n) = my(p=prime(n), k=(p+1)/2); matdet(matrix(k, k, i, j, kronecker(j-i, p))); \\ Michel Marcus, Aug 25 2021
Comments