cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A179073 A179071 for p == 1 (mod 4).

Original entry on oeis.org

-2, -18, -4, -70, -882, -32, -182, -29718, -1068, -500, -5604, -4030, -8890182, -776, -1744, -113582, -4832118, -1118, -1111225770, -1764132, -11018, -20000849130, -23156, -71011068, -16432, -2205718, -8920484118, -1063532
Offset: 1

Views

Author

Jonathan Sondow and Wadim Zudilin, Jun 29 2010

Keywords

Comments

It appears that a(n) is negative and even. (Added Aug 28 2011: This conjecture has been proved by Maxim Vsemirnov.)

Crossrefs

Programs

  • Mathematica
    a71[p_] := Module[{k}, k = (p-1)/2; Det @ Table[JacobiSymbol[j-i, p], {i, 1, k+1}, {j, 1, k+1}]];
    a71 /@ Select[Range[1, 301, 4], PrimeQ] (* Jean-François Alcover, Dec 05 2018 *)

A227609 Determinant of the (p_n-1)/2 X (p_n-1)/2 matrix with (i,j)-entry being the Legendre symbol((i^2+j^2)/p_n), where p_n is the n-th prime.

Original entry on oeis.org

-1, 1, -4, -16, -27, 441, -1024, -1024, 34445, -13778944, 82719025, 48841786125, -67649929216, -564926611456, -153908556861703, -25481517249593344, 2456184022341328125, -399780402627654713344, -14448269983744, -214168150727821285287075
Offset: 2

Views

Author

Zhi-Wei Sun, Jul 17 2013

Keywords

Comments

Conjecture: p_n never divides a(n), and moreover -a(n) is a quadratic residue mod p_n.
Zhi-Wei Sun also made the following conjecture:
Let p be any odd prime. For each integer d let S(d,p) be the determinant of the (p-1)/2 X (p-1)/2 matrix whose (i,j)-entry is the Legendre symbol ((i^2+d*j^2)/p). If d is a quadratic residue mod p, then so is -S(d,p). If d is a quadratic non-residue mod p, then we have S(d,p) = 0.
These were proved in version 9 of arXiv:1308.2900 (2018). In addition, the author has the following new conjecture.
Conjecture: For any prime p == 3 (mod 4), the number -S(1,p) is a positive square divisible by 2^((p-3)/2), i.e., -S(1,p) = (2^((p-3)/4)*m)^2 for some positive integer m. - Zhi-Wei Sun, Sep 09 2018

Examples

			a(2) = -1 since the Legendre symbol ((1^2 + 1^2)/3) is -1.
		

Crossrefs

Programs

  • Maple
    with(numtheory): with(LinearAlgebra):
    a:= n-> Determinant(Matrix((ithprime(n)-1)/2, (i, j)->
            jacobi(i^2+j^2, ithprime(n)))):
    seq(a(n), n=2..20);  # Alois P. Heinz, Jul 18 2013
  • Mathematica
    a[n_]:=Det[Table[JacobiSymbol[i^2+j^2,Prime[n]],{i,1,(Prime[n]-1)/2},{j,1,(Prime[n]-1)/2}]]
    Table[a[n],{n,2,20}]
  • PARI
    a(n) = my(p=prime(n)); matdet(matrix((p-1)/2, (p-1)/2, i, j, kronecker(i^2+j^2, p))); \\ Michel Marcus, Aug 25 2021

A179072 Chapman's "evil" determinants II.

Original entry on oeis.org

-1, -2, 0, 0, -32, 256, 0, 0, -8192, 0, -262144, 5242880, 0, 0, -33554432, 0, -2684354560, 0, 0, 8589934592000, 0, 0, 932385860354048, 160159261748363264, -1125899906842624, 0, 0, -225179981368524800, 5260204364768739328, 0, 0
Offset: 2

Views

Author

Jonathan Sondow and Wadim Zudilin, Jun 29 2010

Keywords

Comments

Determinant of the k-by-k matrix with (i,j)-entry L((i+j)/p), where L(./p) denotes the Legendre symbol modulo p and p = p_n = 2k+1 is the n-th prime.
Guy says "Chapman has a number of conjectures which concern the distribution of quadratic residues." One is that if 3 < p_n == 3 (mod 4), then a(n) = 0.
It appears that a(n) is even, if p_n == 1 (mod 4).
For any odd prime p, (p+1)/2-i+(p+1)/2-j == -(i+j-1) (mod p) and hence we have L(-1/p)*|L((i+j)/p)|{i,j=1,...,(p-1)/2} = |L((i+j-1)/p)|{i,j=1,...,(p-1)/2}. Thus the value of a(n) was actually determined in the first reference of R. Chapman. - Zhi-Wei Sun, Aug 21 2013

Examples

			p_4 = 7 = 2*3 + 1 and the 3 X 3 matrix (L((i+j)/7)) is
   1, -1,  1
  -1,  1, -1
   1, -1, -1
which has determinant 0, so a(4) = 0.
		

References

  • Richard Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004, Section F5.

Crossrefs

Cf. A179071 (Chapman's "evil" determinants I), A179073 (A179071 for p == 1 (mod 4)), A179074 (A179072 for p == 1 (mod 4)).

Programs

  • Mathematica
    a[n_] := Module[{p, k}, p = Prime[n]; k = (p-1)/2; Det @ Table[JacobiSymbol[ i + j, p], {i, 1, k}, {j, 1, k}]];
    Table[a[n], {n, 2, 32}] (* Jean-François Alcover, Nov 18 2018 *)

A227971 Determinant of the (p_n+1)/2 X (p_n+1)/2 matrix with (i,j)-entry (i,j=0,...,(p_n-1)/2) being the Legendre symbol((i+j)/p_n), where p_n is the n-th prime.

Original entry on oeis.org

-1, 2, 8, 32, 96, -1024, 512, 2048, 40960, 32768, 1572864, -33554432, 2097152, 8388608, 234881024, 536870912, 20937965568, 8589934592, 34359738368, -73392401154048, 549755813888, 2199023255552, -8796093022208000, -1577385769486516224, 11258999068426240
Offset: 2

Views

Author

Zhi-Wei Sun, Aug 01 2013

Keywords

Comments

Conjecture: If p_n == 1 (mod 4), then a(n) == ((p_n-1)/2)! (mod p_n). If p_n == 3 (mod 4), then a(n) == (2/p_n) (mod p_n).
Zhi-Wei Sun also made the following general conjecture:
Let p be any odd prime. For each integer d let R(d,p) be the determinant of the (p+1)/2-by-(p+1)/2 matrix whose (i,j)-entry (i,j = 0,...,(p-1)/2) is the Legendre symbol ((i+d*j)/p). When p == 3 (mod 4), we have R(d,p) == (2/p) (mod p) if (d/p) = 1, and R(d,p) == 1 (mod p) if (d/p) = -1. In the case p == 1 (mod 4), we have R(c^2*d,p) == (c/p)*R(d,p) (mod p) for any integer c, and R(d,p) == 1 or -1 (mod p) if (d/p) = -1.
The author could prove that for any odd prime p and integer d not divisible by p, the determinant of the (p-1)-by-(p-1) matrix with (i,j)-entry (i,j=1,...,p-1) being the Legendre symbol ((i+dj)/p) has the exact value (-d/p)*p^{(p-3)/2}.
On August 19 2013, Zhi-Wei Sun found a formula for a(n). Namely, he made the following conjecture: If p_n == 1 (mod 4) and e(p_n)^{h(p_n)} = (a_n + b_n*sqrt(p_n))/2 with a_n and b_n integers of the same parity (where e(p_n) and h(p_n) are the fundamental unit and the class number of the quadratic field Q(sqrt(p_n)) respectively), then a(n) = - (2/p_n)*2^{(p_n-3)/2}*a_n. If p_n > 3 and p_n == 3 (mod 4), then a(n) = 2^{(p_n-1)/2}.
On August 19 2013, Zhi-Wei Sun proved all the conjectured congruences mentioned above by using the identity D(c,d,n) = (-d)^{n*(n+1)/2}*(n!)^{n+1}, where D(c,d,n) is the (n+1) X (n+1) determinant with (i,j)-entry equal to (i+d*j+c)^n for all i,j = 0,...,n. For any prime p == 1 (mod 4) he showed that R(d,p) == (d*(d/p))^{(p-1)/4}*((p-1)/2)! (mod p). Note also that the formula for a(n) found by Sun on August 9, 2013 is actually equivalent to Chapman's result on the evaluation of the determinant |((i+j-1)/p)|_{i,j=1,...,(p+1)/2}.

Examples

			a(2) = -1 since the determinant |((i+j)/3)|_{i=0,1; j=0,1}| equals -1.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Det[Table[JacobiSymbol[i+j, Prime[n]], {i, 0, (Prime[n]-1)/2}, {j, 0, (Prime[n]-1)/2}]]; Table[a[n], {n, 2, 30}]
  • PARI
    a(n) = my(p=prime(n)); matdet(matrix((p+1)/2, (p+1)/2, i, j, i--; j--; kronecker(i+j, p))); \\ Michel Marcus, Aug 25 2021

A179074 A179072 for p == 1 (mod 4).

Original entry on oeis.org

-2, -32, 256, -8192, -262144, 5242880, -33554432, -2684354560, 8589934592000, 932385860354048, 160159261748363264, -1125899906842624, -225179981368524800, 5260204364768739328, 43977037871723571052544
Offset: 1

Views

Author

Jonathan Sondow and Wadim Zudilin, Jun 29 2010

Keywords

Comments

It appears that a(n) is even.

Crossrefs

Programs

  • Mathematica
    a72[p_] := Module[{k}, k = (p-1)/2; Det @ Table[JacobiSymbol[i+j, p], {i, 1, k}, {j, 1, k}]];
    a72 /@ Select[Range[1, 201, 4], PrimeQ] (* Jean-François Alcover, Dec 05 2018 *)

A372385 Determinant of the matrix [Jacobi(i - j, 2n + 1)]_{0 < i, j < n}, where Jacobi(a, m) denotes the Jacobi symbol (a/m).

Original entry on oeis.org

0, 1, 2, 1, 8, 16, 2, 1, -56, 1, 0, 0, 44, 1, 127776, 1067089, 592, 7311616, 22, 1, 0, 1, 0, 98867482624, 132, 1933242748921, 31578700795392, 1, 22108, 0, -6001552839958, 1, -2401383183590221824, 1, 818, 0, 95506686981729056, 1, 0, 1, 30328979503109918400, 208688450689382571638784, 394
Offset: 2

Views

Author

Zhi-Wei Sun, Apr 29 2024

Keywords

Comments

In a 2003 preprint, R. Chapman conjectured that if 2*n + 1 (with n > 1) is a prime congruent to 3 modulo 4, then a(n) = 1.
Conjecture 1: If p = 2*n + 1 is a prime congruent to 1 modulo 4, then det[x + Jacobi(i - j, p)]{0 < i, j < n} = r_p - 2*s_p + (-1)^{n/2}*x*(2*r_p - p*s_p), and det[x + Jacobi(i - j, p)]{0 <= i, j <= n} = -r_p + (-1)^{n/2}*p*s_p*x, where r_p and s_p are rational numbers such that e_p^{(2 - Jacobi(2, p))*h(p)} = r_p + s_p*sqrt(p), e_p and h(p) are the fundamental unit and the class number of the real quadratic field Q(sqrt(p)), respectively.
Conjecture 2: Suppose that p = 2*n + 1 is a prime greater than 3, and write e_p^{h(p)} = a_p + b_p*sqrt(p) with 2*a_p and 2*b_p integral.
(1) det[x + Jacobi(i + j, p)]_{0 < i, j < n} is (-1)^{n/2}*2^{n - 1}*(b_p - a_p*x) if p == 1 (mod 4), and 2^{n-1}*x if p == 3 (mod 4).
(2) det[x + Jacobi(i + j, p)]_{0 <= i, j < n} is (-1)^{n/2}*2^{n-1}*(2*b_p - a_p + x*(p*b_p - 2*a_p)) if p == 1 (mod 4), and -2^{n - 1}*(2*x + 1) if p == 3 (mod 4).
We have checked both conjectures for n up to 1000.

Examples

			a(3) = 1 since the determinant of the matrix [Jacobi(i-j, 2*3+1)]_{0 < i, j < 3} = [0, -1; 1, 0] has the value 1.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Det[Table[JacobiSymbol[i-j, 2n+1], {i, 1, n-1}, {j, 1, n-1}]];
    tab={}; Do[tab=Append[tab, a[n]], {n, 2, 44}]; Print[tab]
  • PARI
    a(n) = matdet(matrix(n-1, n-1, i, j, kronecker(i-j, 2*n+1))); \\ Michel Marcus, Apr 29 2024
    
  • Python
    from sympy import Matrix, jacobi_symbol
    def A372385(n): return Matrix(n-1,n-1,[jacobi_symbol(i-j,(n<<1)|1) for i in range(n-1) for j in range(n-1)]).det() # Chai Wah Wu, Apr 29 2024

A372409 Determinant of the matrix obtained from [Jacobi(i-j, 2*n+1)]_{0

Original entry on oeis.org

1, -1, 1, -3, 3, -8, -5, -5, -24, 7, 0, 0, 9, 9, -81312, -1341867, 11, -19685120, -13, -13, 0, -15, 0, -180287762432, 17, -1407939911477, 10526233598464, 19, 19, 0, 6040299856799, -21, 29830847001120768, 23, -23, 0, 115407361849089836, -25, 0, 27, 104060523591574200
Offset: 2

Views

Author

Zhi-Wei Sun, Apr 29 2024

Keywords

Comments

Conjecture 1: If 2*n + 1 (with n > 1) is a prime p, then a(n)/floor((p-2)/3) coincides with (-1)^((p+3)/4) if p == 1 (mod 4), and (-1)^((h(-p)+1)/2) if p == 3 (mod 4), where h(-p) is the class number of the imaginary quadratic field Q(sqrt(-p)).
Conjecture 2: Let p > 3 be a prime, and let S(p) and T(p) denote the matrices obtained from [Jacobi(i+j,p)]{1<=i,j<=(p-3)/2} and [Jacobi(i+j,p)]{0<=i,j<=(p-3)/2} (respectively) by replacing all the entries in the first row by 1. Then det S(p) = -det T(p) = 2^((p-5)/2)*s(p), where s(p) is (-1)^((p+3)/4) if p == 1 (mod 4), and (-1)^((h(-p)-1)/2) if p == 3 (mod 4).
Both conjectures are motivated by Conjecture 4.6 in the author's 2019 FFA paper as well as the conjectures in A372385. They have been verified for primes p < 2000.

Examples

			a(3) = -1 since the determinant of the matrix [1, 1; Jacobi(2-1,2*3+1), Jacobi(2-2,2*3+1)] = [1, 1; 1, 0] has the value -1.
		

References

  • L.-Y. Wang and H.-L. Wu, On certain determinants involving Legendre symbols, Ramanujan J. 58 (2022), 43-56.

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Det[Table[If[i==1,1,JacobiSymbol[i-j,2*n+1]],{i,1,n-1},{j,1,n-1}]];
    tab={};Do[tab=Append[tab,a[n]],{n,2,42}];Print[tab]
  • PARI
    a(n) = matdet(matrix(n-1, n-1, i, j, if (i==1, 1, kronecker(i-j, 2*n+1)))); \\ Michel Marcus, Apr 30 2024
    
  • Python
    from sympy import Matrix, jacobi_symbol
    def A372409(n): return Matrix(n-1,n-1,[jacobi_symbol(i-j,(n<<1)|1) if i else 1 for i in range(n-1) for j in range(n-1)]).det() # Chai Wah Wu, May 01 2024
Showing 1-7 of 7 results.