cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A227609 Determinant of the (p_n-1)/2 X (p_n-1)/2 matrix with (i,j)-entry being the Legendre symbol((i^2+j^2)/p_n), where p_n is the n-th prime.

Original entry on oeis.org

-1, 1, -4, -16, -27, 441, -1024, -1024, 34445, -13778944, 82719025, 48841786125, -67649929216, -564926611456, -153908556861703, -25481517249593344, 2456184022341328125, -399780402627654713344, -14448269983744, -214168150727821285287075
Offset: 2

Views

Author

Zhi-Wei Sun, Jul 17 2013

Keywords

Comments

Conjecture: p_n never divides a(n), and moreover -a(n) is a quadratic residue mod p_n.
Zhi-Wei Sun also made the following conjecture:
Let p be any odd prime. For each integer d let S(d,p) be the determinant of the (p-1)/2 X (p-1)/2 matrix whose (i,j)-entry is the Legendre symbol ((i^2+d*j^2)/p). If d is a quadratic residue mod p, then so is -S(d,p). If d is a quadratic non-residue mod p, then we have S(d,p) = 0.
These were proved in version 9 of arXiv:1308.2900 (2018). In addition, the author has the following new conjecture.
Conjecture: For any prime p == 3 (mod 4), the number -S(1,p) is a positive square divisible by 2^((p-3)/2), i.e., -S(1,p) = (2^((p-3)/4)*m)^2 for some positive integer m. - Zhi-Wei Sun, Sep 09 2018

Examples

			a(2) = -1 since the Legendre symbol ((1^2 + 1^2)/3) is -1.
		

Crossrefs

Programs

  • Maple
    with(numtheory): with(LinearAlgebra):
    a:= n-> Determinant(Matrix((ithprime(n)-1)/2, (i, j)->
            jacobi(i^2+j^2, ithprime(n)))):
    seq(a(n), n=2..20);  # Alois P. Heinz, Jul 18 2013
  • Mathematica
    a[n_]:=Det[Table[JacobiSymbol[i^2+j^2,Prime[n]],{i,1,(Prime[n]-1)/2},{j,1,(Prime[n]-1)/2}]]
    Table[a[n],{n,2,20}]
  • PARI
    a(n) = my(p=prime(n)); matdet(matrix((p-1)/2, (p-1)/2, i, j, kronecker(i^2+j^2, p))); \\ Michel Marcus, Aug 25 2021

A227968 Determinant of the (p_n+1)/2 X (p_n+1)/2 matrix with (i,j)-entry (i,j=0,...,(p_n-1)/2) equal to the Legendre symbol((i^2+j^2)/p_n), where p_n is the n-th prime.

Original entry on oeis.org

-1, 2, -12, -80, -162, 3528, -9216, -11264, 482230, -206684160, 1488942450, 976835722500, -1420648513536, -12993312063488, -4001622478404278, -738964000238206976, 73685520670239843750, -13192753286712605540352, -505689449431040
Offset: 2

Views

Author

Zhi-Wei Sun, Aug 01 2013

Keywords

Comments

Conjecture: 2*a(n) is always a quadratic residue mod p_n.
Zhi-Wei Sun also made the following general conjecture:
Let p be any odd prime. For each integer d let T(d,p) be the determinant of the (p+1)/2 X (p+1)/2 matrix whose (i,j)-entry (i,j=0,...,(p-1)/2) is the Legendre symbol ((i^2+d*j^2)/p). Then T(-d,p) == (2/p)*T(d,p) (mod p). If d is a quadratic residue mod p, then so is 2*T(d,p). If d is a quadratic non-residue mod p, then T(d,p) is a quadratic residue mod p.
The author has proved the following results for any odd prime p:
(1) If c and d are integers with c not divisible by p, and d' == c^2*d (mod p), then T(d',p) = (c/p)^((p+1)/2)*T(d,p).
(2) If p is congruent to 1 mod 4 and d is not divisible by p, then T(-d,p) = (2/p)*T(d,p).
The general conjecture mentioned above was proved in a recent preprint of Zhi-Wei Sun.

Examples

			a(2) = -1 since the determinant |((i^2 + j^2)/3)|_{i=0,1; j=0,1} equals -1.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Det[Table[JacobiSymbol[i^2+j^2, Prime[n]], {i, 0, (Prime[n]-1)/2}, {j, 0, (Prime[n]-1)/2}]]; Table[a[n], {n, 2, 20}]
  • PARI
    a(n) = my(p=prime(n)); matdet(matrix((p+1)/2, (p+1)/2, i, j, i--; j--; kronecker(i^2+j^2, p))); \\ Michel Marcus, Aug 25 2021

A226163 Determinant of the (p_n-1)/2-by-(p_n-1)/2 matrix with (i,j)-entry being the Legendre symbol ((i^2-((p_n-1)/2)!*j)/p_n), where p_n is the n-th prime.

Original entry on oeis.org

0, -1, 0, 0, -8, -72, 0, 0, -2061248, 0, -18150912, 2581719040, 0, 0, 6237406973952, 0, 311692729699401728, 0, 0, 2675112340760315428864, 0, 0, -149670892669766097645487521792, 162894623351898578070944297779200, 273248864699809403831952842162176, 0, 0, -13518055482368485085619549462056665088, 4364947372586985974930810143672643878912
Offset: 2

Views

Author

Zhi-Wei Sun, Aug 05 2013

Keywords

Comments

Conjecture: a(n) = 0 if and only if p_n == 3 (mod 4).
Note that for an odd prime p we have (((p-1)/2)!)^2 == (-1)^{(p+1)/2} (mod p) by Wilson's theorem. In 1961, Mordell proved that((p-1)/2)! == (-1)^{(h(-p)+1)/2} (mod p) for any prime p > 3 with p == 3 (mod 4), where h(-p) is the class number of the imaginary quadratic field Q(sqrt(-p)).

Examples

			a(2) = 0 since the Legendre symbol ((1^2-1)/3) is equal to 0.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Det[Table[JacobiSymbol[i^2-((Prime[n]-1)/2)!*j,Prime[n]],{i,1,(Prime[n]-1)/2},{j,1,(Prime[n]-1)/2}]]
    Table[a[n],{n,2,30}]

A228005 Determinant of the (p_n-1)/2-by-(p_n-1)/2 matrix with (i,j)-entry being the Legendre symbol ((i^2+j^2+1)/p_n), where p_n is the n-th prime.

Original entry on oeis.org

0, -2, 1, -2, -72, -672, 136, 4352, -265600, 602048, 2658941440, 128532940800, 7138246144, -277070036992, -5928696847474688, 140393397382594560, -476899996446720000, 73073105939334987776, -197109670210161672192
Offset: 2

Views

Author

Zhi-Wei Sun, Aug 07 2013

Keywords

Comments

Conjecture: We have (a(n)/p_n) = ((2(-1)^{(p_n-1)/2}-4)/p_n).
Zhi-Wei Sun also made the following general conjectures for any odd prime p:
(i) Let c and d be integers not divisible by p, and let S be the determinant of the (p-1)/2-by-(p-1)/2 matrix whose (i,j)-entry is the Legendre symbol ((i^2+d*j^2+c)/p).
Then (S/p) = 1 if (c/p) = 1 and (d/p) = -1; (S/p) = (-1/p) if (c/p) = (d/p) = -1; (S/p) = (-2/p) if (-c/p) = (d/p) = 1; and (S/p) = (-6/p) if (-c/p)= -1 and (d/p) = 1.
(ii) Let d be any integer not divisible by p. For k = 1,2 let D_k(c) be the determinant of the (p+1)/2-by-(p+1)/2 matrix with (i,j)-entry (i,j = 0,...,(p-1)/2) being the Legendre symbol ((i^k+d*j^k+c)/p). Then D_k(c) == D_k(0) (mod p) for every integer c.

Examples

			a(2) = 0 since the Legendre symbol ((1^2+1^2+1)/3) is zero.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Det[Table[JacobiSymbol[i^2+j^2+1,Prime[n]],{i,1,(Prime[n]-1)/2},{j,1,(Prime[n]-1)/2}]]
    Table[a[n],{n,2,20}]

A228077 Determinant of the (p_n-1)/2 X (p_n-1)/2 matrix with (i,j)-entry being the Legendre symbol ((j-i)/p_n), where p_n is the n-th prime.

Original entry on oeis.org

0, -1, 0, 0, -5, 1, 0, 0, -13, 0, -145, 5, 0, 0, -25, 0, -3805, 0, 0, 125, 0, 0, 53, 569, -401, 0, 0, -851525, 73, 0, 0, 149, 0, -9305, 0, -385645, 0, 0, -85, 0, -82596761, 0, 126985, -785, 0, 0, 0, 0, -1321693313, 1517, 0, 4574225, 0, 1025, 0, -134485, 0, -535979945, 63445, 0, -145, 0, 0, 7170685, -19805, 0, 55335641, 0, -167273125693, 3793, 0, 0, -27765559705, 0, 0, -427316305, -1027776565, 2564801, 5534176685
Offset: 2

Views

Author

Zhi-Wei Sun, Aug 09 2013

Keywords

Comments

Conjecture: In the case p_n == 1 (mod 4), (2/p_n)*a(n) is a positive odd integer whose prime factors are all congruent to 1 modulo 4, and moreover for some integer b(n) we have b(n) + (2/p_n)*a(n)*sqrt(p_n) = e(p_n)^{(2-(2/p_n))h(p_n)}, where e(p_n) and h(p_n) are the fundamental unit and the class number of the real quadratic field Q(sqrt(p_n)) respectively.
Note that a(n) = 0 when p_n == 3 (mod 4), this is because the transpose of the determinant a(n) coincides with (-1/p_n)^{(p_n-1)/2}*a(n) = -a(n).
M. Vsemirnov has proved Robin Chapman's conjecture on the evaluation of the determinant of the (p+1)/2-by-(p+1)/2 matrix with (i,j)-entry (i,j = 0,...,(p-1)/2) being the Legendre symbol ((j-i)/p), where p is an odd prime.
On Aug 14 2013, Robin Chapman informed the author that he first made the conjecture about the exact value of a(n) in a private manuscript dated Aug 05 2003.

Examples

			a(2) = 0 since the Legendre symbol ((1-1)/3) is zero.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Det[Table[JacobiSymbol[j-i,Prime[n]],{i,1,(Prime[n]-1)/2},{j,1,(Prime[n]-1)/2}]]
    Table[a[n],{n,2,20}]
  • PARI
    a(n) = my(p=prime(n)); matdet(matrix((p-1)/2, (p-1)/2, i, j, i--; j--; kronecker(i-j, p))); \\ Michel Marcus, Aug 25 2021

A225611 Determinant of the (p_n-1) X (p_n-1) matrix with (i,j)-entry equal to the Legendre symbol ((i^2+6*i*j+j^2)/p_n), where p_n is the n-th prime.

Original entry on oeis.org

0, -16, 0, 0, 0, 18939904, 0, 0, -600706205614080, 0, -3126394312091238400, 915844279166632469526048000, 0, 0, 1513783909437524991467008819200000000, 0, -6597762875255062617688526826958066024448000, 0, 0
Offset: 2

Views

Author

Zhi-Wei Sun, Aug 11 2013

Keywords

Comments

Conjecture: We have a(n) = 0 if p_n == 3 (mod 4).
For an odd prime p and integers c and d, Zhi-Wei Sun defined (c,d)_p to be the determinant of the (p-1) X (p-1) matrix whose (i,j)-entry is the Legendre symbol ((i^2+c*i*j+d*j^2)/p). It is easy to see that (-c,d)_p = (-1/p)*(c,d)_p. Sun conjectured that for any integer c and nonzero integer d there are infinitely many odd primes p with (c,d)_p = 0, moreover (c,d)_p = 0 if (d/p) = -1. He also formulated some concrete conjectures in the case (d/p) = 1. For example, (3,3)_p = 0 if p == 11 (mod 12), and (10,9)_p = 0 if p == 5 (mod 12); (3,2)_p = (4,2)_p = 0 if p == 7 (mod 8).
On August 12 2013, Zhi-Wei Sun conjectured that for any odd prime p and integers c and d with d not divisible by p, if (c,d)_p is nonzero then its p-adic valuation (i.e., p-adic order) must be even.

Crossrefs

Programs

  • Mathematica
    a[n_]:=Det[Table[JacobiSymbol[i^2+6*i*j+j^2,Prime[n]],{i,1,(Prime[n]-1)},{j,1,(Prime[n]-1)}]]
    Table[a[n],{n,2,20}]
  • PARI
    a(n) = my(p=prime(n)); matdet(matrix(p-1, p-1, i, j, kronecker(i^2+6*i*j+j^2, p))); \\ Michel Marcus, Aug 25 2021

A228095 Determinant of the p_n X p_n matrix with (i,j)-entry equal to the Legendre symbol ((i^2 + 3*i*j + 3*j^2)/p_n) for all i,j = 0, 1, ..., p_n-1, where p_n is the n-th prime.

Original entry on oeis.org

0, 0, -72, 0, 9600, 0, 23970816, 0, 0, -8814759178752000000, -1217765613534782800527360, 0, 2555625991208076641833058304, 0, 0, 0, 164525463228624478317575381527120287356682240, -33094833021317386202938131485140597289779200, 0
Offset: 2

Views

Author

Zhi-Wei Sun, Aug 12 2013

Keywords

Comments

Conjecture: a(n) = 0 if p_n == 5 (mod 6).
For an odd prime p and integers c and d, Zhi-Wei Sun defined [c,d]_p to be the determinant of the p X p matrix with (i,j)-entry equal to the Legendre symbol ((i^2+c*i*j+d*j^2)/p). It is easy to see that [-c,d]_p = (-1/p)*[c,d]_p. Sun conjectured that for any integer c and nonzero integer d there are infinitely many odd primes p with [c,d]_p = 0. He also conjectured that if (c,d)_p (defined in the comments in A225611) is nonzero with d not divisible by p, then [c,d]_p/(c,d)_p equals (1-p)/(p-2) or (p-1)/2 according as p divides c^2-4*d or not. He also made some concrete conjectures, for example, [3,2]_p = 0 if p == 3 (mod 4); and [4,2]_p = 0 if p == 5 or 7 (mod 8).
On Aug 12 2013, Zhi-Wei Sun conjectured that for any odd prime p and integers c and d with d not divisible by p, if [c,d]_p is nonzero then its p-adic valuation (i.e., p-adic order) must be even.

Crossrefs

Programs

  • Mathematica
    a[n_]:=Det[Table[JacobiSymbol[i^2+3*i*j+3*j^2,Prime[n]],{i,0,(Prime[n]-1)},{j,0,(Prime[n]-1)}]]
    Table[a[n],{n,2,20}]
  • PARI
    a(n) = my(p=prime(n)); matdet(matrix(p, p, i, j, i--; j--; kronecker(i^2+3*i*j+3*j^2, p))); \\ Michel Marcus, Aug 25 2021
Showing 1-7 of 7 results.