A227609 Determinant of the (p_n-1)/2 X (p_n-1)/2 matrix with (i,j)-entry being the Legendre symbol((i^2+j^2)/p_n), where p_n is the n-th prime.
-1, 1, -4, -16, -27, 441, -1024, -1024, 34445, -13778944, 82719025, 48841786125, -67649929216, -564926611456, -153908556861703, -25481517249593344, 2456184022341328125, -399780402627654713344, -14448269983744, -214168150727821285287075
Offset: 2
Keywords
Examples
a(2) = -1 since the Legendre symbol ((1^2 + 1^2)/3) is -1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..100
- Zhi-Wei Sun, On some determinants with Legendre symbol entries, preprint, arXiv:1308.2900 [math.NT], 2013-2019.
- Zhi-Wei Sun, Is -det[Legendre(i^2+j^2,p)]_{i,j=1,...,(p-1)/2} always a square for each prime p == 3 (mod 4)?, Question 310192 in MathOverflow, Sept. 9, 2018.
Programs
-
Maple
with(numtheory): with(LinearAlgebra): a:= n-> Determinant(Matrix((ithprime(n)-1)/2, (i, j)-> jacobi(i^2+j^2, ithprime(n)))): seq(a(n), n=2..20); # Alois P. Heinz, Jul 18 2013
-
Mathematica
a[n_]:=Det[Table[JacobiSymbol[i^2+j^2,Prime[n]],{i,1,(Prime[n]-1)/2},{j,1,(Prime[n]-1)/2}]] Table[a[n],{n,2,20}]
-
PARI
a(n) = my(p=prime(n)); matdet(matrix((p-1)/2, (p-1)/2, i, j, kronecker(i^2+j^2, p))); \\ Michel Marcus, Aug 25 2021
Comments