A227971 Determinant of the (p_n+1)/2 X (p_n+1)/2 matrix with (i,j)-entry (i,j=0,...,(p_n-1)/2) being the Legendre symbol((i+j)/p_n), where p_n is the n-th prime.
-1, 2, 8, 32, 96, -1024, 512, 2048, 40960, 32768, 1572864, -33554432, 2097152, 8388608, 234881024, 536870912, 20937965568, 8589934592, 34359738368, -73392401154048, 549755813888, 2199023255552, -8796093022208000, -1577385769486516224, 11258999068426240
Offset: 2
Keywords
Examples
a(2) = -1 since the determinant |((i+j)/3)|_{i=0,1; j=0,1}| equals -1.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 2..100
- L. Carlitz, Some cyclotomic matrices, Acta Arith. 5(1959), 293-308.
- Robin Chapman, Determinants of Legendre symbol matrices, Acta Arith. 115 (2004), 231-244.
- Zhi-Wei Sun, A conjecture on Legendre symbol determinants, a message to Number Theory List, July 17, 2013.
- Zhi-Wei Sun, On some determinants with Legendre symbol entries, arXiv:1308.2900 [math.NT], 2010-2013; Finite Fields Appl. 56(2019), 285-307,
- Maxim Vsemirnov, On the evaluation of R. Chapman's "evil determinant", Linear Algebra Appl. 436(2012), 4101-4106.
- Maxim Vsemirnov, On R. Chapman's "evil determinant": case p == 1 (mod 4), Acta Arith. 159 (2013), 331-344.
Programs
-
Mathematica
a[n_] := Det[Table[JacobiSymbol[i+j, Prime[n]], {i, 0, (Prime[n]-1)/2}, {j, 0, (Prime[n]-1)/2}]]; Table[a[n], {n, 2, 30}]
-
PARI
a(n) = my(p=prime(n)); matdet(matrix((p+1)/2, (p+1)/2, i, j, i--; j--; kronecker(i+j, p))); \\ Michel Marcus, Aug 25 2021
Comments