cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179080 Number of partitions of n into distinct parts where all differences between consecutive parts are odd.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 4, 2, 6, 4, 7, 5, 9, 8, 12, 10, 14, 15, 17, 19, 22, 26, 26, 32, 32, 42, 40, 52, 48, 66, 59, 79, 73, 98, 89, 118, 108, 143, 133, 170, 160, 204, 194, 241, 236, 286, 283, 336, 339, 396, 407, 464, 483, 544, 575, 634, 681, 740, 803, 862, 944, 1001, 1110, 1162, 1296, 1348, 1512, 1561, 1760, 1805
Offset: 0

Views

Author

Joerg Arndt, Jan 04 2011

Keywords

Examples

			From _Joerg Arndt_, Oct 27 2012:  (Start)
The a(18) = 15 such partitions of 18 are:
[ 1]  1 2 3 12
[ 2]  1 2 5 10
[ 3]  1 2 7 8
[ 4]  1 2 15
[ 5]  1 4 5 8
[ 6]  1 4 13
[ 7]  1 6 11
[ 8]  1 8 9
[ 9]  2 3 4 9
[10]  2 3 6 7
[11]  3 4 5 6
[12]  3 4 11
[13]  3 6 9
[14]  5 6 7
[15]  18
(End)
		

Crossrefs

Cf. A179049 (odd differences and odd minimal part).
Cf. A189357 (even differences, distinct parts), A096441 (even differences).
Cf. A000009 (partitions of 2*n with even differences and even minimal part).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, b(n, i+2)+b(n-i, i+1)))
        end:
    a:= n-> `if`(n=0, 1, b(n, 1)+b(n, 2)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Nov 08 2012; revised Feb 24 2020
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n==0, 1, If[i<1, 0, b[n, i-1, t] + If[i <= n && Mod[i, 2] != t, b[n-i, i-1, Mod[i, 2]], 0]]]; a[n_] := If[n==0, 1, Sum[b[n-i, i-1, Mod[i, 2]], {i, 1, n}]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 24 2015, after Alois P. Heinz *)
    Join[{1},Table[Length[Select[IntegerPartitions[n],Max[Length/@Split[#]]==1 && AllTrue[ Differences[#],OddQ]&]],{n,70}]] (* Harvey P. Dale, Jun 25 2022 *)
  • PARI
    N=66; x='x+O('x^N); gf = sum(n=0,N, x^(n*(n+1)/2) / prod(k=1,n+1, 1-x^(2*k) ) ); Vec( gf ) /* Joerg Arndt, Jan 29 2011 */
  • Sage
    def A179080(n):
        odd_diffs = lambda x: all(abs(d) % 2 == 1 for d in differences(x))
        satisfies = lambda p: not p or odd_diffs(p)
        def count(pred, iter): return sum(1 for item in iter if pred(item))
        return count(satisfies, Partitions(n, max_slope=-1))
    print([A179080(n) for n in range(0, 20)]) # show first terms
    
  • Sage
    # Alternative after Alois P. Heinz:
    def A179080(n):
        @cached_function
        def h(n, k):
            if n == 0: return 1
            if k  > n: return 0
            return h(n, k+2) + h(n-k, k+1)
        return h(n, 1) + h(n, 2) if n > 0 else 1
    print([A179080(n) for n in range(71)]) # Peter Luschny, Feb 25 2020
    

Formula

G.f.: sum(n>=0, x^(n*(n+1)/2) / prod(k=1..n+1, 1-x^(2*k) ) ). - Joerg Arndt, Jan 29 2011
a(n) = A179049(n) + A218355(n). - Joerg Arndt, Oct 27 2012