A179080 Number of partitions of n into distinct parts where all differences between consecutive parts are odd.
1, 1, 1, 2, 1, 3, 2, 4, 2, 6, 4, 7, 5, 9, 8, 12, 10, 14, 15, 17, 19, 22, 26, 26, 32, 32, 42, 40, 52, 48, 66, 59, 79, 73, 98, 89, 118, 108, 143, 133, 170, 160, 204, 194, 241, 236, 286, 283, 336, 339, 396, 407, 464, 483, 544, 575, 634, 681, 740, 803, 862, 944, 1001, 1110, 1162, 1296, 1348, 1512, 1561, 1760, 1805
Offset: 0
Keywords
Examples
From _Joerg Arndt_, Oct 27 2012: (Start) The a(18) = 15 such partitions of 18 are: [ 1] 1 2 3 12 [ 2] 1 2 5 10 [ 3] 1 2 7 8 [ 4] 1 2 15 [ 5] 1 4 5 8 [ 6] 1 4 13 [ 7] 1 6 11 [ 8] 1 8 9 [ 9] 2 3 4 9 [10] 2 3 6 7 [11] 3 4 5 6 [12] 3 4 11 [13] 3 6 9 [14] 5 6 7 [15] 18 (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Atul Dixit and Gaurav Kumar, The Rogers-Ramanujan dissection of a theta function, arXiv:2411.06412 [math.NT], 2024. See pp. 16, 23.
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0, b(n, i+2)+b(n-i, i+1))) end: a:= n-> `if`(n=0, 1, b(n, 1)+b(n, 2)): seq(a(n), n=0..100); # Alois P. Heinz, Nov 08 2012; revised Feb 24 2020
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n==0, 1, If[i<1, 0, b[n, i-1, t] + If[i <= n && Mod[i, 2] != t, b[n-i, i-1, Mod[i, 2]], 0]]]; a[n_] := If[n==0, 1, Sum[b[n-i, i-1, Mod[i, 2]], {i, 1, n}]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 24 2015, after Alois P. Heinz *) Join[{1},Table[Length[Select[IntegerPartitions[n],Max[Length/@Split[#]]==1 && AllTrue[ Differences[#],OddQ]&]],{n,70}]] (* Harvey P. Dale, Jun 25 2022 *)
-
PARI
N=66; x='x+O('x^N); gf = sum(n=0,N, x^(n*(n+1)/2) / prod(k=1,n+1, 1-x^(2*k) ) ); Vec( gf ) /* Joerg Arndt, Jan 29 2011 */
-
Sage
def A179080(n): odd_diffs = lambda x: all(abs(d) % 2 == 1 for d in differences(x)) satisfies = lambda p: not p or odd_diffs(p) def count(pred, iter): return sum(1 for item in iter if pred(item)) return count(satisfies, Partitions(n, max_slope=-1)) print([A179080(n) for n in range(0, 20)]) # show first terms
-
Sage
# Alternative after Alois P. Heinz: def A179080(n): @cached_function def h(n, k): if n == 0: return 1 if k > n: return 0 return h(n, k+2) + h(n-k, k+1) return h(n, 1) + h(n, 2) if n > 0 else 1 print([A179080(n) for n in range(71)]) # Peter Luschny, Feb 25 2020
Formula
G.f.: sum(n>=0, x^(n*(n+1)/2) / prod(k=1..n+1, 1-x^(2*k) ) ). - Joerg Arndt, Jan 29 2011