cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179088 Positive integers of the form (2*m^2+1)/11.

Original entry on oeis.org

3, 9, 41, 59, 123, 153, 249, 291, 419, 473, 633, 699, 891, 969, 1193, 1283, 1539, 1641, 1929, 2043, 2363, 2489, 2841, 2979, 3363, 3513, 3929, 4091, 4539, 4713, 5193, 5379, 5891, 6089, 6633, 6843, 7419, 7641, 8249, 8483, 9123, 9369, 10041, 10299, 11003, 11273
Offset: 1

Views

Author

Bruno Berselli, Jun 29 2010 - Jul 09 2010

Keywords

Comments

Here m = (11*(2*n - 1) - 5*(-1)^n)/4 for n>0.
All terms of A113338 are in the sequence.

Crossrefs

Programs

  • Magma
    [i/11: m in [1..250] | i mod 11 eq 0 where i is 2*m^2+1]; // Bruno Berselli, Jun 26 2011
    
  • Maple
    t1:=[]; for n from 0 to 1000 do i:=2*n^2+1; if i mod 11 = 0 then t1:=[op(t1),i/11]; fi; od: # N. J. A. Sloane, Jul 05 2010
  • Mathematica
    Select[Table[(2m^2 + 1)/11, {m, 0, 300}], IntegerQ] (* Harvey P. Dale, Dec 17 2010 *)
  • PARI
    for(m=1, 250, i=2*m^2+1; if(Mod(i,11)==0, print1(i/11", "))); \\ Bruno Berselli, Jun 26 2011

Formula

a(n) = (22*n*(n - 1) - 5*(2*n - 1)*(-1)^n + 7)/4.
G.f.: x*(3 + 6*x + 26*x^2 + 6*x^3 + 3*x^4)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n+1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(2*n)+a(2*n+1)= 11*A000290(2*n)+6; a(2*n-1)+a(2*n) = 11*A000290(2*n-1)+1.

Extensions

Edited by N. J. A. Sloane, Jul 05 2010: offset changed to 1 (since this is a list), and terms verified.