cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179156 G.f. satisfies: A(x) = B(x*A(x)) where B(x) = Sum_{n>=0} x^n/n!^2 and A(x) = Sum_{n>=0} a(n)*x^n/n!^2.

Original entry on oeis.org

1, 1, 5, 64, 1577, 64026, 3887167, 330394800, 37487397201, 5477556616750, 1002201757761971, 224502014115239136, 60447250689539460925, 19264011725572422723292, 7172619686789755991626485
Offset: 0

Views

Author

Paul D. Hanna, Jan 04 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 5*x^2/2!^2 + 64*x^3/3!^2 + 1577*x^4/4!^2 +...
where A(x) = Sum_{n>=0} x^n*A(x)^n/n!^2.
Also, A(x/B(x)) = B(x) = 1 + x + x^2/2!^2 + x^3/3!^2 + x^4/4!^2 +...
		

Crossrefs

Cf. A217567.

Programs

  • PARI
    {a(n)=local(B=sum(m=0,n,x^m/m!^2+O(x^(n+2))));n!^2*polcoeff(serreverse(x/B)/x,n)}

Formula

G.f.: A(x) = (1/x)*Series_Reversion(x/B(x)) where A(x/B(x)) = B(x) = Sum_{n>=0} x^n/n!^2.
a(n) = [x^n/n!^2] B(x)^(n+1)/(n+1).