A179244 Numbers that have 4 terms in their Zeckendorf representation.
33, 46, 51, 53, 54, 67, 72, 74, 75, 80, 82, 83, 85, 86, 87, 101, 106, 108, 109, 114, 116, 117, 119, 120, 121, 127, 129, 130, 132, 133, 134, 137, 138, 139, 141, 156, 161, 163, 164, 169, 171, 172, 174, 175, 176, 182, 184, 185, 187, 188, 189, 192, 193, 194, 196
Offset: 1
Keywords
Examples
33=21+8+3+1; 46=34+8+3+1; 51=34+13+3+1; 53=34+13+5+1; 54=34+13+5+2;
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a179244 n = a179244_list !! (n-1) a179244_list = filter ((== 4) . a007895) [1..] -- Reinhard Zumkeller, Mar 10 2013
-
Maple
with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(9)-1 to 200 do if B(i) = 4 then Q := `union`(Q, {i}) else end if end do: Q;
-
Mathematica
zeck = DigitCount[Select[Range[2000], BitAnd[#, 2*#] == 0&], 2, 1]; Position[zeck, 4] // Flatten (* Jean-François Alcover, Jan 25 2018 *)
Comments