cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179246 Numbers that have 6 terms in their Zeckendorf representation.

Original entry on oeis.org

232, 321, 355, 368, 373, 375, 376, 465, 499, 512, 517, 519, 520, 554, 567, 572, 574, 575, 588, 593, 595, 596, 601, 603, 604, 606, 607, 608, 698, 732, 745, 750, 752, 753, 787, 800, 805, 807, 808, 821, 826, 828, 829, 834, 836, 837, 839, 840, 841, 876, 889
Offset: 1

Views

Author

Emeric Deutsch, Jul 05 2010

Keywords

Comments

A007895(a(n)) = 6. - Reinhard Zumkeller, Mar 10 2013

Examples

			232 = 144 + 55 + 21 +  8 + 3 + 1;
321 = 233 + 55 + 21 +  8 + 3 + 1;
355 = 233 + 89 + 21 +  8 + 3 + 1;
368 = 233 + 89 + 34 +  8 + 3 + 1;
373 = 233 + 89 + 34 + 13 + 3 + 1.
		

Crossrefs

Programs

  • Haskell
    a179246 n = a179246_list !! (n-1)
    a179246_list = filter ((== 6) . a007895) [1..]
    -- Reinhard Zumkeller, Mar 10 2013
  • Maple
    with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i; for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(13)-1 to 900 do if B(i) = 6 then Q := `union`(Q, {i}) else end if end do: Q;
  • Mathematica
    zeck = DigitCount[Select[Range[12000], BitAnd[#, 2*#] == 0 &], 2, 1];
    Position[zeck, 6] // Flatten (* Jean-François Alcover, Jan 30 2018 *)