A179246 Numbers that have 6 terms in their Zeckendorf representation.
232, 321, 355, 368, 373, 375, 376, 465, 499, 512, 517, 519, 520, 554, 567, 572, 574, 575, 588, 593, 595, 596, 601, 603, 604, 606, 607, 608, 698, 732, 745, 750, 752, 753, 787, 800, 805, 807, 808, 821, 826, 828, 829, 834, 836, 837, 839, 840, 841, 876, 889
Offset: 1
Keywords
Examples
232 = 144 + 55 + 21 + 8 + 3 + 1; 321 = 233 + 55 + 21 + 8 + 3 + 1; 355 = 233 + 89 + 21 + 8 + 3 + 1; 368 = 233 + 89 + 34 + 8 + 3 + 1; 373 = 233 + 89 + 34 + 13 + 3 + 1.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a179246 n = a179246_list !! (n-1) a179246_list = filter ((== 6) . a007895) [1..] -- Reinhard Zumkeller, Mar 10 2013
-
Maple
with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i; for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(13)-1 to 900 do if B(i) = 6 then Q := `union`(Q, {i}) else end if end do: Q;
-
Mathematica
zeck = DigitCount[Select[Range[12000], BitAnd[#, 2*#] == 0 &], 2, 1]; Position[zeck, 6] // Flatten (* Jean-François Alcover, Jan 30 2018 *)
Comments