A179248 Numbers that have 8 terms in their Zeckendorf representation.
1596, 2206, 2439, 2528, 2562, 2575, 2580, 2582, 2583, 3193, 3426, 3515, 3549, 3562, 3567, 3569, 3570, 3803, 3892, 3926, 3939, 3944, 3946, 3947, 4036, 4070, 4083, 4088, 4090, 4091, 4125, 4138, 4143, 4145, 4146, 4159, 4164, 4166, 4167, 4172, 4174, 4175
Offset: 1
Keywords
Examples
1596 = 987+377+144+55+21+8+3+1; 2206 = 1597+377+144+55+21+8+3+1; 2439 = 1597+610+144+55+21+8+3+1; 2528 = 1597+610+233+55+21+8+3+1; 2562 = 1597+610+233+89+21+8+3+1.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a179249 n = a179249_list !! (n-1) a179249_list = filter ((== 9) . a007895) [1..] -- Reinhard Zumkeller, Mar 10 2013
-
Maple
with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(17)-1 to 5000 do if B(i) = 8 then Q := `union`(Q, {i}) else end if end do: Q;
-
Mathematica
zeck = DigitCount[Select[Range[10^5], BitAnd[#, 2*#] == 0 &], 2, 1]; Position[zeck, 8] // Flatten (* Jean-François Alcover, Jan 30 2018 *)
Comments