A179249 Numbers that have 9 terms in their Zeckendorf representation.
4180, 5777, 6387, 6620, 6709, 6743, 6756, 6761, 6763, 6764, 8361, 8971, 9204, 9293, 9327, 9340, 9345, 9347, 9348, 9958, 10191, 10280, 10314, 10327, 10332, 10334, 10335, 10568, 10657, 10691, 10704, 10709, 10711, 10712, 10801, 10835, 10848
Offset: 1
Keywords
Examples
4180 = 2584 +987+377+144+55+21+8+3+1; 5777 = 4181 +987+377+144+55+21+8+3+1; 6387 = 4181+1597+377+144+55+21+8+3+1; 6620 = 4181+1597+610+144+55+21+8+3+1; 6709 = 4181+1597+610+233+55+21+8+3+1.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a179249 n = a179249_list !! (n-1) a179249_list = filter ((== 9) . a007895) [1..] -- Reinhard Zumkeller, Mar 10 2013
-
Maple
with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(19)-1 to 10900 do if B(i) = 9 then Q := `union`(Q, {i}) else end if end do: Q;
-
Mathematica
zeck = DigitCount[Select[Range[4*10^5], BitAnd[#, 2*#] == 0 &], 2, 1]; Position[zeck, 9] // Flatten (* Jean-François Alcover, Jan 30 2018 *)
Comments