A179251 Numbers that have 11 terms in their Zeckendorf representation.
28656, 39602, 43783, 45380, 45990, 46223, 46312, 46346, 46359, 46364, 46366, 46367, 57313, 61494, 63091, 63701, 63934, 64023, 64057, 64070, 64075, 64077, 64078, 68259, 69856, 70466, 70699, 70788, 70822, 70835, 70840, 70842, 70843
Offset: 1
Keywords
Examples
28656=17711+6765+2584+987+377+144+55+21+8+3+1; 39602=28657+6765+2584+987+377+144+55+21+8+3+1;
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a179251 n = a179251_list !! (n-1) a179251_list = filter ((== 11) . a007895) [1..] -- Reinhard Zumkeller, Mar 10 2013
-
Maple
with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(23)-1 to 73000 do if B(i) = 11 then Q := `union`(Q, {i}) else end if end do: Q;
-
Mathematica
Select[Range[6*10^6], BitAnd[#, 2*#] == 0&] // DigitCount[#, 2, 1]& // Position[#, 11]& // Flatten (* Jean-François Alcover, Feb 15 2018 *)
Comments