cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179251 Numbers that have 11 terms in their Zeckendorf representation.

Original entry on oeis.org

28656, 39602, 43783, 45380, 45990, 46223, 46312, 46346, 46359, 46364, 46366, 46367, 57313, 61494, 63091, 63701, 63934, 64023, 64057, 64070, 64075, 64077, 64078, 68259, 69856, 70466, 70699, 70788, 70822, 70835, 70840, 70842, 70843
Offset: 1

Views

Author

Emeric Deutsch, Jul 05 2010

Keywords

Comments

A007895(a(n)) = 11. - Reinhard Zumkeller, Mar 10 2013

Examples

			28656=17711+6765+2584+987+377+144+55+21+8+3+1;
39602=28657+6765+2584+987+377+144+55+21+8+3+1;
		

Crossrefs

Programs

  • Haskell
    a179251 n = a179251_list !! (n-1)
    a179251_list = filter ((== 11) . a007895) [1..]
    -- Reinhard Zumkeller, Mar 10 2013
  • Maple
    with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(23)-1 to 73000 do if B(i) = 11 then Q := `union`(Q, {i}) else end if end do: Q;
  • Mathematica
    Select[Range[6*10^6], BitAnd[#, 2*#] == 0&] // DigitCount[#, 2, 1]& // Position[#, 11]& // Flatten (* Jean-François Alcover, Feb 15 2018 *)