A179255 Number of partitions of n into distinct parts such that the successive differences of consecutive parts are nondecreasing.
1, 1, 1, 2, 2, 3, 4, 5, 5, 8, 9, 10, 13, 15, 16, 22, 24, 26, 33, 36, 39, 50, 54, 58, 70, 77, 83, 100, 109, 116, 137, 150, 159, 186, 202, 216, 249, 270, 288, 328, 355, 379, 428, 462, 491, 554, 597, 633, 707, 760, 807, 899, 964, 1020, 1127, 1211, 1282, 1412, 1512, 1596, 1750, 1873, 1976, 2160, 2305, 2434, 2652, 2826, 2978
Offset: 0
Keywords
Examples
There are a(17) = 26 such partitions of 17: 01: [ 1 2 3 4 7 ] 02: [ 1 2 3 11 ] 03: [ 1 2 4 10 ] * 04: [ 1 2 5 9 ] * 05: [ 1 2 14 ] * 06: [ 1 3 5 8 ] 07: [ 1 3 13 ] * 08: [ 1 4 12 ] * 09: [ 1 5 11 ] * 10: [ 1 16 ] * 11: [ 2 3 4 8 ] 12: [ 2 3 5 7 ] 13: [ 2 3 12 ] * 14: [ 2 4 11 ] * 15: [ 2 5 10 ] * 16: [ 2 15 ] * 17: [ 3 4 10 ] * 18: [ 3 5 9 ] * 19: [ 3 14 ] * 20: [ 4 5 8 ] * 21: [ 4 13 ] * 22: [ 5 12 ] * 23: [ 6 11 ] * 24: [ 7 10 ] * 25: [ 8 9 ] * 26: [ 17 ] * The 21 partitions marked with * have strictly increasing differences, see the example for A179254. - _Joerg Arndt_, Mar 31 2014
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..1000 (terms 0..241 from Joerg Arndt)
Crossrefs
Programs
-
Ruby
def partition(n, min, max) return [[]] if n == 0 [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i - 1).map{|rest| [i, *rest]}} end def f(n) return 1 if n == 0 cnt = 0 partition(n, 1, n).each{|ary| ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]} cnt += 1 if ary0.sort == ary0.reverse } cnt end def A179255(n) (0..n).map{|i| f(i)} end p A179255(50) # Seiichi Manyama, Oct 12 2018
-
Sage
def A179255(n): has_nondecreasing_diffs = lambda x: min(differences(x,2)) >= 0 allowed = lambda x: len(x) < 3 or has_nondecreasing_diffs(x) return len([x for x in Partitions(n,max_slope=-1) if allowed(x[::-1])]) # D. S. McNeil, Jan 06 2011
Comments