cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A179299 Number of corner-rooted pentagulations of girth 5 with 2n+1 inner faces.

Original entry on oeis.org

1, 5, 121, 4690, 228065, 12673173, 768897585, 49645423227, 3357669088200, 235393836387360, 16981887962145418, 1254065444086727685, 94424981678123285373, 7227272422780512414100, 560989900421822288646265, 44076648941211191411236261, 3500015582480750626266664105
Offset: 0

Views

Author

Jonathan Vos Post, Jul 09 2010

Keywords

Crossrefs

Programs

  • Mathematica
    k = 34;
    {w0, w1, w2, w3} = FixedPoint[Function[{w0, w1, w2, w3}, {w1^2 + w2, w1^3 + 2 w1 w2 + w3, w1^4 + 3 w1^2 w2 + 2 w1 w3 + w2^2, x (1 + w0)^4} + O[x]^k] @@ # &, ConstantArray[0, 4]];
    f = w3 - (w0 w3 + 2 w1 w2);
    CoefficientList[f, x][[2 ;; ;; 2]]
    (* Andrey Zabolotskiy, Jan 17 2022 *)

Extensions

Entry edited, terms a(5) and beyond added by Andrey Zabolotskiy, Jan 17 2022

A228704 Number of 4-irreducible maps made up of two hexagons and n squares.

Original entry on oeis.org

1, 6, 21, 62, 180, 540, 1683, 5418, 17901, 60390, 207207, 720954, 2537964, 9023328, 32354910, 116873028, 424901655, 1553574330, 5709123135, 21075032250, 78114397680, 290595385080, 1084663520730, 4060907367660, 15246207481050, 57387012171372, 216517061206998
Offset: 0

Views

Author

N. J. A. Sloane, Sep 06 2013

Keywords

Crossrefs

Cf. A179300.

Programs

  • Mathematica
    Join[{1}, Table[6*(2*(n - 1))!/(n!*(n - 1)!)*Hypergeometric2F1[-5, 1 - n, 2*(1 - n), -1], {n, 1, 50}]] (* Franck Maminirina Ramaharo, Jan 27 2019 *)

Formula

Bouttier-Guittier give an explicit formula.
a(0) = 1, and a(n) = (6*(2 *(n - 1))!/(n!*(n - 1)!))*2F1(-5, 1 - n, 2*(1 - n); -1) for n >= 1, where 2F1(a, b, c; z) is the hypergeometric function. - Franck Maminirina Ramaharo, Jan 27 2019
a(n) ~ 729 * 2^(2*n - 6) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 09 2019
D-finite with recurrence n*(9*n-29)*(3*n-10)*a(n) -2*(9*n-20)*(2*n-7)*(3*n-7)*a(n-1)=0. - R. J. Mathar, Feb 08 2021

Extensions

More terms from Franck Maminirina Ramaharo, Jan 27 2019
Showing 1-2 of 2 results.