cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A111378 Squares that are equal to the sum of two Fibonacci numbers.

Original entry on oeis.org

0, 1, 4, 9, 16, 36, 144, 1600, 14930496
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 09 2005

Keywords

Comments

Any further terms have more than 10,000 digits. - Charles R Greathouse IV, Sep 16 2015

Crossrefs

Squares in A084176 (or A059389). Cf. A000045, A179334.

Programs

  • Maple
    Fibs:= {seq(combinat:-fibonacci(i),i=0..100)}:
    sort(convert(select(issqr,{seq(seq(Fibs[i]+Fibs[j],j=1..i),i=1..100)}),list)); # Robert Israel, Jun 03 2024
  • Mathematica
    Select[Union[Total/@Subsets[Fibonacci[Range[0,100]],{2}],Table[Fibonacci[n]*2,{n,0,100}]],IntegerQ[Sqrt[#]]&] (* James C. McMahon, Jun 03 2024 *)
  • PARI
    list(lim)=my(F=List(),v=List([0,1]),n=1,t); while((t=fibonacci(n++))<=lim, listput(F,t)); F=Vec(F); for(i=1,#F,for(j=i,#F, if(issquare(t=F[i]+F[j]), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Sep 16 2015

Extensions

1600 from Jonathan Vos Post, Nov 11 2005
14930496 from N. J. A. Sloane, Nov 11 2005

A179459 Squares that are a sum of two Fibonacci numbers plus the square of a Fibonacci number.

Original entry on oeis.org

4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 169, 225, 289, 441, 676, 729, 784, 1156, 1444, 1600, 2601, 3025, 4624, 7921, 12544, 20736, 23409, 27556, 31684, 47524, 54289, 139129, 142129, 171396, 217156, 372100, 974169, 1488400, 2550409, 6677056, 10201636
Offset: 1

Views

Author

Carmine Suriano, Jan 12 2011

Keywords

Comments

The squares of A000045 (A007598) are basically a subsequence because they can be expressed as Fibonacci(k+3)^2 = Fibonacci(2k)+Fibonacci(2k+4)+Fibonacci(k-1)^2 or Fibonacci(k+2)^2 = Fibonacci(2k)+Fibonacci(2k+1)+Fibonacci(k)^2 or Fibonacci(2k+3)^2 = Fibonacci(4k)+Fibonacci(4k+4)+Fibonacci(2k-1)^2.

Examples

			a(5)=36=6*6=3+8+25=Fib(4)+Fib(6)+Fib(5)^2.
		

Crossrefs

Showing 1-2 of 2 results.