cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179339 Positive integers of the form (30*m^2+1)/11.

Original entry on oeis.org

11, 221, 461, 1091, 1571, 2621, 3341, 4811, 5771, 7661, 8861, 11171, 12611, 15341, 17021, 20171, 22091, 25661, 27821, 31811, 34211, 38621, 41261, 46091, 48971, 54221, 57341, 63011, 66371, 72461, 76061, 82571, 86411, 93341, 97421
Offset: 1

Views

Author

Bruno Berselli, Jul 11 2010 - Dec 10 2010

Keywords

Comments

Here m = (11*(2*n-1)+3*(-1)^n)/4 for n>0.
More generally, (t*((11*(2*n-1)+k*(-1)^n)/4)^2 +1)/11 = ( 22*t*n*(n-1) +t*k*(2*n-1)*(-1)^n+(t*(k^2+121)+16)/22 )/8 for any natural number t == 2, 6, 7, 8, 10 (mod 11) and k = -5, -1, -9, 3, 7, respectively.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1},{11,221,461,1091,1571},40] (* Harvey P. Dale, Mar 03 2023 *)

Formula

a(n) = (330*n*(n-1)+45*(2*n-1)*(-1)^n+89)/4.
G.f.: x*(11+210*x+218*x^2+210*x^3+11*x^4)/((1+x)^2*(1-x)^3).
a(n) = a(-n+1) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5).