A179382 a(n) is the smallest period of pseudo-arithmetic progression with initial term 1 and difference 2n-1.
1, 1, 2, 1, 3, 5, 6, 1, 4, 9, 2, 4, 10, 9, 14, 1, 5, 5, 18, 4, 10, 7, 5, 9, 10, 2, 26, 8, 9, 29, 30, 1, 6, 33, 11, 14, 3, 9, 15, 17, 27, 41, 2, 11, 4, 4, 3, 14, 24, 15, 50, 23, 4, 53, 18, 14, 14, 19, 3, 9, 55, 6, 50, 1, 7, 65, 8, 17, 34, 69, 23, 25, 14, 20, 74, 5, 10, 8, 26, 21
Offset: 1
Keywords
Examples
For n=5, we have 1<+>9=5, 5<+>9=7, 7<+>9=1. Thus a(5)=3.
Links
- Peter J. C. Moses, Table of n, a(n) for n = 1..4096
Programs
-
Maple
pseuAprog := proc(a,b) A000265(a+b) ; end proc: A179382 := proc(n) local p,k; p := [1] ; for k from 2 do a := pseuAprog( p[-1],2*n-1) ; if not a in p then p := [op(p),a] ; else return nops(p) ; end if; end do: end proc: seq(A179382(n),n=1..80) ; # R. J. Mathar, Jul 13 2010
-
Mathematica
oddres[n_] := n/2^IntegerExponent[n, 2]; a[n_] := Module[{d = 2n-1, k=1, t=1}, While[(t = oddres[t+d])>1, k++]; k]; Array[a, 80] (* Jean-François Alcover, Apr 13 2020, translated from PARI *)
-
PARI
oddres(n)=n>>valuation(n,2) a(n)=my(d=2*n-1,k=1,t=1);while((t=oddres(t+d))>1,k++);k \\ Charles R Greathouse IV, May 15 2013
-
Sage
def A179382(n): N, o, s = 2*n-1, 1, 0 while True: o = (N + o) >> valuation(N + o, 2) s = s + 1 if o == 1: break return s print([A179382(n) for n in (1..72)]) # Peter Luschny, Oct 07 2017
Formula
Extensions
Corrected and extended by R. J. Mathar, Jul 13 2010
Duplicated database lines removed by R. J. Mathar, Jul 23 2010
Comments