A179385 The n-th term is the sum of all the 1's generated from all the combinations of prime numbers and ones possible, that add to n, when each prime is only allowed once and any number of ones are allowed.
1, 2, 4, 7, 10, 15, 20, 27, 35, 44, 55, 67, 81, 97, 115, 135, 158, 183, 212, 244, 280, 320, 364, 413, 467, 526, 591, 661, 737, 820, 909, 1007, 1112, 1226, 1349, 1481, 1624, 1778, 1943, 2121, 2311, 2515, 2734, 2968, 3219, 3486, 3771, 4075, 4399, 4744, 5112, 5502
Offset: 1
Keywords
Examples
n=7 gives 11111 11, 2111 11, 311 11, 5 11, 5 2, 32 11. (Grouped in 5's) no. of 1's: 7, 5, 4, 2, 0, 2. Sum is 20, therefore a(7) = 20. n=12 gives 11111 11111 11, 11111 11111 2, 11111 311 11, 11111 32 11, 11111 5 11, 5 2111 11, 5 311 11, 5 32 11, 7111 11, 721 11, 73 11, 73 2, 75, eleven 1, no. of 1's: 12, 10, 9, 7, 7, 5, 4, 2, 5, 3, 2, 0, 0, 1. Sum is 67, therefore a(12) = 67. 1: 1 => 1 2: 11, 2 => 2 3: 111, 21 => 4 4: 1111, 211, 22, 31 => 7 5: 11111, 2111, 311, 23 => 10 6: 11111 1, 2111 1, 311 1, 23 1, 5 1 => 15 and so on.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 175 terms from Robert G. Wilson v)
Crossrefs
Programs
-
Maple
b:= proc(n,i) option remember; if n<=0 then 0 elif i=0 then n else b(n, i-1) +b(n-ithprime(i), i-1) fi end: # R. J. Mathar, Jul 14 2010 a:= n-> b(n, numtheory[pi](n)): seq(a(n), n=1..80); # Alois P. Heinz
-
Mathematica
fQ[lst_List] := Sort@ Flatten@ Most@ Split@ lst == Rest@ Union@ lst; f[n_] := Sum[ Count[ Select[ IntegerPartitions[n, {k}, Join[{1}, Prime@ Range@ PrimePi@n]], fQ@# &], 1, 2], {k, n}]; Array[f, 50] (* improved by Robert G. Wilson v, Jul 20 2010 *) (* second program: *) b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[Prime[i] > n, 0, b[n - Prime[i], i - 1]]]]; a[n_] := Sum[k*b[n - k, PrimePi[n - k]], {k, 1, n}]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
-
PARI
a(n) = my(r); r = x/(1-x)^2 + O(x^(n+1)); forprime(p=2,n,r*=1+x^p); polcoeff(r,n) \\ Max Alekseyev, Jul 14 2010
Formula
a(n) = Sum_{k=1..n} k * A000586(n-k). - Max Alekseyev, Jul 14 2010
Extensions
Corrected and extended by R. J. Mathar, Jul 14 2010