A179386 Records of minima of A154333, difference of a cube minus the next smaller square.
2, 4, 7, 26, 28, 47, 49, 60, 63, 174, 207, 307, 7670, 15336, 18589, 22189, 37071, 44678, 63604, 64432
Offset: 1
Examples
For numbers x > 32, A154333(x) > 7. For numbers x > 35, A154333(x) > 26. For numbers x > 37, A154333(x) > 28. For numbers x > 63, A154333(x) > 47. For numbers x > 65, A154333(x) > 49. For numbers x > 136, A154333(x) > 60. For numbers x > 568, A154333(x) > 63. For numbers x > 5215, A154333(x) > 174. For numbers x > 367806, A154333(x) > 207. For numbers x > 939787, A154333(x) > 307.
Links
- J. Calvo, J. Herranz, G. Saez, A new algorithm to search for small nonzero |x^3 - y^2| values, Math. Comp. 78 (2009), 2435-2444.
- Noam Elkies, Rational points near curves and small nonzero |x^3 - y^2| via lattice reduction arXiv:math/0005139 [math.NT], 2000.
- J. Gebel, Integer points on Mordell curves [Cached copy, after the original web site tnt.math.se.tmu.ac.jp was shut down in 2017]
- J. Gebel, A. Petho, G. Zimmer, On Mordell's equation, Compositio Mathematica 110 (1998), 335-367. MR1602064
Programs
-
Mathematica
max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; min = 10^100; Do[m = Floor[(n^3)^(1/2)]; k = n^3 - m^2; If[k != 0, If[k <= min, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; min = 10^100; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m]], {n, 1, 13333677}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; dd
Extensions
Edited by M. F. Hasler, Sep 27 2013
Comments