A179403 Number of ways to place 2 nonattacking kings on an n X n toroidal board.
0, 0, 0, 56, 200, 486, 980, 1760, 2916, 4550, 6776, 9720, 13520, 18326, 24300, 31616, 40460, 51030, 63536, 78200, 95256, 114950, 137540, 163296, 192500, 225446, 262440, 303800, 349856, 400950
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- V. Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes
- Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5, 1).
Crossrefs
Cf. A061995.
Programs
-
Mathematica
CoefficientList[Series[2 x^3 (x-2) (5 x^2 - 13 x + 14) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 01 2013 *)
Formula
Explicit formula: a(n) = 1/2*n^2*(n-3)*(n+3), n>=3.
G.f.: 2*x^4*(x-2)*(5*x^2 - 13*x + 14)/(x-1)^5.