cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A193580 Triangle read by rows: T(n,k) = number of ways to place k nonattacking kings on an n X n board.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 9, 16, 8, 1, 1, 16, 78, 140, 79, 1, 25, 228, 964, 1987, 1974, 978, 242, 27, 1, 1, 36, 520, 3920, 16834, 42368, 62266, 51504, 21792, 3600, 1, 49, 1020, 11860, 85275, 397014, 1220298, 2484382, 3324193, 2882737, 1601292, 569818, 129657, 18389, 1520, 64, 1
Offset: 0

Views

Author

Andrew Woods, Aug 27 2011

Keywords

Comments

Rows 2n and 2n-1 both contain 1 + n^2 entries. Cf. A008794.
Row n sums to A063443(n+1).
Number of walks of length n-1 on a graph in which each node represents a 11-avoiding n-bit binary sequence B and adjacency of B and B' is determined by B'&(B|(B<<1)|(B>>1))=0 and the total number of nonzero bits in the walk is k.
Row n gives the coefficients of the independence polynomial of the n X n king graph. - Eric W. Weisstein, Jun 20 2017

Examples

			The table begins with T(0,0):
  1;
  1,   1;
  1,   4;
  1,   9,  16,   8,   1;
  1,  16,  78, 140,  79;
  ...
T(4,3) = 140 because there are 140 ways to place 3 kings on a 4 X 4 chessboard so that no king threatens any other.
		

References

  • Norman Biggs, Algebraic Graph Theory, Cambridge University Press, New York, NY, second edition, 1993.

Crossrefs

Diagonal: A201513.
Cf. A179403, etc., for extension to toroidal boards.
Cf. A166540, etc., for extension into three dimensions.
Cf. A098487 for a clipped version.
Row n sums to A063443(n+1).

Formula

T(n, 0) = 1;
T(n, 1) = n^2;
T(2n-1, n^2-1) = n^3;
T(2n-1, n^2) = 1.

A179424 Number of ways to place 4 nonattacking kings on an n X n toroidal board.

Original entry on oeis.org

0, 0, 0, 12, 575, 9837, 63553, 265008, 853497, 2312925, 5532967, 12037068, 24293243, 46125317, 83243925, 143918272, 239811333, 387002853, 607226187, 929346700, 1391111127, 2041198973, 2941608713, 4170413232, 5824920625, 8025278157, 10918558863, 14683371948, 19535039827, 25731386325
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 07 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^3 (160 x^9 - 963 x^8 + 2054 x^7 - 1308 x^6 - 963 x^5 - 375 x^4 + 5288 x^3 - 5094 x^2 -467 x - 12) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 01 2013 *)

Formula

Explicit formula: a(n) = 1/24*n^2*(n^6-54*n^4+1019*n^2-6798), n>=5.
G.f.: x^4*(160*x^9 - 963*x^8 + 2054*x^7 - 1308*x^6 - 963*x^5 - 375*x^4 + 5288*x^3 - 5094*x^2 - 467*x - 12)/(x-1)^9.

A179404 Number of ways to place 3 nonattacking kings on an n X n toroidal board.

Original entry on oeis.org

0, 0, 0, 48, 600, 3108, 10388, 27328, 61668, 124900, 233288, 409008, 681408, 1088388, 1677900, 2509568, 3656428, 5206788, 7266208, 9959600, 13433448, 17858148, 23430468, 30376128, 38952500, 49451428, 62202168, 77574448, 95981648, 117884100
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 07 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 4 x^3 (12 x^6 - 67 x^5 + 140 x^4 - 112 x^3 - 21 x^2 + 66 x + 12) / (x - 1)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 01 2013 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,0,48,600,3108,10388,27328,61668,124900},30] (* Harvey P. Dale, Aug 04 2024 *)

Formula

Explicit formula: a(n) = 1/6*n^2*(n^4 -27*n^2 +194), n>=4.
G.f.: -4*x^4*(12*x^6 -67*x^5 +140*x^4 -112*x^3 -21*x^2 +66*x +12)/(x-1)^7.

A179425 Number of ways to place 5 nonattacking kings on an n X n toroidal board.

Original entry on oeis.org

0, 0, 0, 0, 10, 14940, 229908, 1678336, 8155404, 30614620, 96011322, 263506752, 652150382, 1485650012, 3161648520, 6355083264, 12167739256, 22339050588, 39536586430, 67748508480, 112804636266, 183057635420, 290261282204, 450688785408, 686540794500, 1027700020828, 1513897376994, 2197363228480, 3146046781446, 4447496831580
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 07 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 2 x^4 (260 x^11 - 1932 x^10 + 6567 x^9 - 16223 x^8 + 38507 x^7 - 77869 x^6 + 102208 x^5 - 61576 x^4 - 15301 x^3 + 33059 x^2 + 7415 x + 5) / (x - 1)^11, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 01 2013 *)

Formula

Explicit formula: a(n) = 1/120*n^2*(n^8-90n^6+3155n^4-51450n^2+332544), n>=6.
G.f.: -2x^5*(260x^11 - 1932x^10 + 6567x^9 - 16223x^8 + 38507x^7 - 77869x^6 + 102208x^5 - 61576x^4 - 15301x^3 + 33059x^2 + 7415x + 5)/(x-1)^11.

A179426 Number of ways to place 6 nonattacking kings on an n X n toroidal board.

Original entry on oeis.org

0, 0, 0, 0, 0, 10596, 486668, 7063520, 55345356, 299491100, 1263811604, 4455716184, 13701863604, 37823872044, 95648273100, 224887404416, 497181121100, 1042609380588, 2088337713332, 4017815773400, 7459198321428, 13414493857116, 23444476061772, 39928736913120, 66425550447500, 108162598959740, 172697249542932, 270794133842456, 417578468928308, 634036069773900
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 07 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[4 x^5 (426 x^13 - 4263 x^12 + 22311 x^11 - 82449 x^10 + 220918 x^9 - 391803 x^8 + 369356 x^7 + 10716 x^6 - 382230 x^5 + 163719 x^4 + 387689 x^3 - 390831 x^2 - 87230 x - 2649) / (x - 1)^13, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 01 2013 *)

Formula

a(n) = 1/720*n^2*(n^10 -135*n^8 +7525*n^6 -217665*n^4 +3289354*n^2 -20949480), n>=7.
G.f.: 4*x^6*(426*x^13 - 4263*x^12 + 22311*x^11 - 82449*x^10 + 220918*x^9 - 391803*x^8 + 369356*x^7 + 10716*x^6 - 382230*x^5 + 163719*x^4 + 387689*x^3 - 390831*x^2 - 87230*x - 2649)/(x-1)^13.

A194650 Number of ways to place 2 nonattacking kings on an n X n cylindrical chessboard.

Original entry on oeis.org

0, 0, 9, 68, 215, 504, 1001, 1784, 2943, 4580, 6809, 9756, 13559, 18368, 24345, 31664, 40511, 51084, 63593, 78260, 95319, 115016, 137609, 163368, 192575, 225524, 262521, 303884, 349943, 401040, 457529, 519776, 588159, 663068, 744905, 834084, 931031, 1036184
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 31 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^2*(4*x^4 - 19*x^3 + 35*x^2 - 23*x - 9)/(x - 1)^5, {x, 0, 50}], x] (* Wesley Ivan Hurt, Dec 27 2023 *)

Formula

a(n) = 1/2*n*(n^3 - 9*n + 6), n>=3.
G.f.: x^3*(4*x^4 - 19*x^3 + 35*x^2 - 23*x - 9)/(x-1)^5.

A179427 Number of ways to place 7 nonattacking kings on an n X n toroidal board.

Original entry on oeis.org

0, 0, 0, 0, 0, 3420, 576856, 19760512, 270487188, 2209065700, 12914201256, 59659859232, 231216019632, 781647658596, 2367858314700, 6553746728448, 16815788711212, 40446802230372, 92003239814224, 199311860224800, 413589922308360, 825997764087012, 1594007700404532, 2982430581363072, 5425904270482500, 9622254525739492, 16669554533555832, 28264133502586912, 46982453295836640, 76676963241363300
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 07 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 4 x^5 (1379 x^16 - 18219 x^15 + 124755 x^14 - 553765 x^13 + 1657983 x^12 - 3369984 x^11 + 4870575 x^10 - 6400905 x^9 + 10992208 x^8 - 19069951 x^7 + 21246441 x^6 - 8631071 x^5 - 7797385 x^4 + 8273322 x^3 + 2866693 x^2 + 131389 x + 855) / (x - 1)^15, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 01 2013 *)

Formula

Explicit formula: a(n) = 1/5040*n^2*(n^12 -189*n^10 +15295*n^8 -681135*n^6 +17692024*n^4 -255655596*n^2 +1617230880), n>=8.
G.f.: -4*x^6*(1379*x^16 - 18219*x^15 + 124755*x^14 - 553765*x^13 + 1657983*x^12 - 3369984*x^11 + 4870575*x^10 - 6400905*x^9 + 10992208*x^8 - 19069951*x^7 + 21246441*x^6 - 8631071*x^5 - 7797385*x^4 + 8273322*x^3 + 2866693*x^2 + 131389*x + 855)/(x-1)^15.

A179428 Number of ways to place 8 nonattacking kings on an n X n toroidal board.

Original entry on oeis.org

0, 0, 0, 0, 0, 486, 346381, 36285336, 956078397, 12428297150, 104000525596, 643409498286, 3191250652226, 13361641961066, 48905750870775, 160414160371552, 480243686391743, 1330654487994234, 3449609146025210, 8439769551278350, 19624142987739108, 43616849672119790, 93112709811981557, 191696927842663704, 381920049400830625, 738532765420347014, 1389708580432837752, 2550402748009811870, 4573836436177381798, 8029626473495462850
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 07 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^5 (17728 x^19 - 301964 x^18 + 2573500 x^17 - 13833040 x^16 + 51521058 x^15 - 143708688 x^14 + 325486412 x^13 - 629393865 x^12 + 996601251 x^11 - 1090603627 x^10 + 426710617 x^9 + 807953488 x^8 - 1328885640 x^7 + 262625618 x^6 + 1106513030 x^5 - 875387697 x^4 - 386005021 x^3 - 30462955 x^2 - 338119 x - 486) / (x - 1)^17, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 01 2013 *)

Formula

a(n) = 1/40320*n^2 * (n^14 -252*n^12 +27874*n^10 -1759800*n^8 +68745649*n^6 -1669136028*n^4 +23447322156*n^2 -147931524720), n>=9.
G.f.: x^6*(17728x^19 - 301964x^18 + 2573500x^17 - 13833040x^16 + 51521058x^15 - 143708688x^14 + 325486412x^13 - 629393865x^12 + 996601251x^11 - 1090603627x^10 + 426710617x^9 + 807953488x^8 - 1328885640x^7 + 262625618x^6 + 1106513030x^5 - 875387697x^4 - 386005021x^3 - 30462955x^2 - 338119x - 486)/(x-1)^17.

A180067 Number of ways to place 9 nonattacking kings on an n X n toroidal board.

Original entry on oeis.org

0, 0, 0, 0, 0, 28, 81095, 42752576, 2436444603, 53633024900, 666519047964, 5655962632720, 36502953719310, 191587564345044, 854990702601025, 3346890268570368, 11756179090049177, 37692541754516628, 111774885566128630, 309788198526691600
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 15 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- x^5 (56520 x^22 - 1215064 x^21 + 12642984 x^20 - 82438064 x^19 + 378510176 x^18 - 1315100032 x^17 + 3593010018 x^16 - 7742517098 x^15 + 12798616135 x^14 - 15614945085 x^13 + 14742135008 x^12 - 17197088896 x^11 + 33440162097 x^10 - 55183782403 x^9 + 50601858342 x^8 - 7249042450 x^7 - 32800069391 x^6 + 23010354469 x^5 + 14572795412 x^4 + 1637985772 x^3 + 41216559 x^2 + 80563 x + 28) / (x - 1)^19, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 01 2013 *)

Formula

a(n) = 1/362880*n^2 * (n^16 -324*n^14 +46914*n^12 -3975048*n^10 +216203169*n^8 -7756575876*n^6 +179987135516*n^4 -2481599151792*n^2 +15651056776320), n>=10.
G.f.: -x^6*(56520x^22 - 1215064x^21 + 12642984x^20 - 82438064x^19 + 378510176x^18 - 1315100032x^17 + 3593010018x^16 - 7742517098x^15 + 12798616135x^14 - 15614945085x^13 + 14742135008x^12 - 17197088896x^11 + 33440162097x^10 - 55183782403x^9 + 50601858342x^8 - 7249042450x^7 - 32800069391x^6 + 23010354469x^5 + 14572795412x^4 + 1637985772x^3 + 41216559x^2 + 80563x + 28)/(x-1)^19.
General asymptotic formula for number of ways to place k nonattacking kings on an n X n toroidal board: n^2k/k! - 9/2*n^(2k-2)/(k-2)! + (243k+47)*n^(2k-4)/(24*(k-3)!) - (243k^2+141k+80)*n^(2k-6)/(16*(k-4)!) + (98415k^3+114210k^2+140645k+101762)*n^(2k-8)/(5760*(k-5)!)-...
Showing 1-9 of 9 results.